• Title/Summary/Keyword: Cell migration

Search Result 1,212, Processing Time 0.036 seconds

Numerical Analysis of the Prediction of Zincate Concentration at a Zinc Electrode with Electrolyte Flow Conditions in a Zinc Air Fuel Cell (전해질 유동 조건에 따른 아연공기전지 아연극 표면의 Zincate 이온 농도 예측을 위한 수치해석적 연구)

  • Kim, Jung-Yun;Lee, Ho-Il;Oh, Tae-Young;Park, Sang-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.231-238
    • /
    • 2011
  • In this work, the numerical analysis for the zincate behavior at a zinc electrode with an electrolyte flow was carried out for a ZAFC. The Nernst-Planck equation with a boundary condition of Butler-Volmer type was adopted to describe electrochemical effects of mass transfer, migration, kinetics of electrode. The Navier-Stokes equation, coupling to the Nernst-Planck equation, is also applied to describe the internal electrolyte flow fields. The validity of the numerical model is proved through the comparative analysis between numerical and experimental results. The concentration of zincate and the current density were also investigated at a zinc anode according to various electrolyte velocities. We have found the concentration of zincate decreased and the current density increased with an increase in the electrolyte velocity.

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

Analysis of calmodulin binding property of IQ motifs of IQGAP1 (IQGAP1내에 존재하는 IQ 부위들의 CaM 결합 특성 분석)

  • Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2011
  • IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known $Ca^{2+}$-independent calmodulin (CaM) binding protein, is involved in various cellular functions such as cell proliferation and cell migration. IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been shown that all four IQ motifs of IQGAP1 can bind to $Ca^{2+}$/CaM, while the third and fourth IQ motifs of IQGAP1 can bind to apoCaM. However, it has not been clear whether the CaM binding of IQ motifs of IQGAP1 was mediated directly or indirectly. In this study, we examined whether the binding between CaM and each IQ motif of IQGAP1 was direct in vitro. As a result, we found that IQ1 motif has a weak $Ca^{2+}$-dependent CaM binding. In contrast, IQ3 has a $Ca^{2+}$-dependent CaM binding. All other motifs have no significant CaM binding. We also found that IQ(2.7-3) and IQ(3.5-4.4) have CaM binding capacity. This finding indicates that IQ motifs of IQGAP1 plays a dynamic role via different motif interactions with $Ca^{2+}$/CaM or proCaM.

EphA2 Receptor Signaling Mediates Inflammatory Responses in Lipopolysaccharide-Induced Lung Injury

  • Hong, Ji Young;Shin, Mi Hwa;Chung, Kyung Soo;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Kim, Young Sam;Kim, Se Kyu;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.218-226
    • /
    • 2015
  • Background: Eph receptors and ephrin ligands have several functions including angiogenesis, cell migration, axon guidance, fluid homeostasis, oncogenesis, inflammation and injury repair. The EphA2 receptor potentially mediates the regulation of vascular permeability and inflammation in response to lung injury. Methods: Mice were divided into 3 experimental groups to study the role of EphA2 signaling in the lipopolysaccharide (LPS)-induced lung injury model i.e., IgG+phosphate-buffered saline (PBS) group (IgG instillation before PBS exposure), IgG+LPS group (IgG instillation before LPS exposure) and EphA2 monoclonal antibody (mAb)+LPS group (EphA2 mAb pretreatment before LPS exposure). Results: EphA2 and ephrinA1 were upregulated in LPS-induced lung injury. The lung injury score of the EphA2 mAb+LPS group was lower than that of the IgG+LPS group ($4.30{\pm}2.93$ vs. $11.45{\pm}1.20$, respectively; p=0.004). Cell counts (EphA2 mAb+LPS: $11.33{\times}10^4{\pm}8.84{\times}10^4$ vs. IgG+LPS: $208.0{\times}10^4{\pm}122.6{\times}10^4$; p=0.018) and total protein concentrations (EphA2 mAb+LPS: $0.52{\pm}0.41mg/mL$ vs. IgG+LPS: $1.38{\pm}1.08mg/mL$; p=0.192) were decreased in EphA2 mAb+LPS group, as compared to the IgG+LPS group. In addition, EphA2 antagonism reduced the expression of phospho-p85, phosphoinositide 3-kinase $110{\gamma}$, phospho-Akt, nuclear factor ${\kappa}B$, and proinflammatory cytokines. Conclusion: This results of the study indicated a role for EphA2-ephrinA1 signaling in the pathogenesis of LPS-induced lung injury. Furthermore, EphA2 antagonism inhibits the phosphoinositide 3-kinase-Akt pathway and attenuates inflammation.

Antimutagenic Effects of Ginsenoside Rb$_1$, Rg$_1$ in the CHO-K1 Cells by Benzo[a]pyrene with Chromosomal Aberration Test and Comet Assay

  • Kim, Jong-Kyu;Kim, Soo-Jin;Rim, Kyung-Taek;Cho, Hae-Won;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.126-132
    • /
    • 2009
  • The usage and types of chemicals are advancing, specializing, large-scaled increasing, and new chemical exposed workers are concerning to occupational disease. The generation of reactive oxygen in the body from carcinogen, mutation and DNA damage in cancer is protected by natural antioxidants (phytochemicals) with antimutagenic effect. There were many reports of ginsenoside Rb$_1$, Rg$_1$ grievances of the genetic mutation to suppress the effect confirm the genetic toxicity test with chromosomal aberration test and the Comet (SCGE) assay confirmed the suppression effect occurring chromosomal DNA damage. We had wanted to evaluate the compatibility and sensitivity between the chromosomal aberration (CA) test and the Comet assay. We used the CA test and Comet assay to evaluate the anti-genotoxicity of ginsenoside Rb$_1$ and Rg$_1$, in CHO-K1 (Chinese hamster ovary fibroblast) cell in vitro, composed negative control (solvent), positive control (benzo[a]pyrene), test group (carcinogen+variety concentration of ginsenoside) group. The positive control was benzo[a]pyrene (50 $\mu$M), well-known carcinogen, and the negative control was the 1 % DMSO solvent. The test group was a variety concentration of ginsenoside Rb$_1$, Rg$_1$ with 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10%. In chromo-somal aberration test, we measured the number of cells with abnormally structured chromosome. In Comet assay, the Olive tail moment (OTM) and Tail length (TL) values were measured. The ratio of cell proliferation was increased 8.3% in 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10% Rb$_1$ treated groups, and increased 10.4% in 10$^{-10}$%, 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1% Rg$_1$ treated groups. In the CA test, the number of chromosomal aberration was decreased all the Rb$_1$ and Rg$_1$ treated groups. In the Comet assay, the OTM values were decreased in all the Rb$_1$ and Rg$_1$ treated groups. To evaluate the compatibility between CA and Comet assay, we compared the reducing ratio of chromosomal abnormalities with its OTM values, it was identified the antimutagenicity of ginsenoside, but it was more sensitive the CA test than the Comet assay. Ginsenoside Rb$_1$ and Rg$_1$ significantly decrease the number of cells with chromosomal aberration, and decrease the extent of DNA migration. Therefore, ginsenoside Rb$_1$, Rg$_1$ are thought as an antioxidant phytochemicals to protect mutagenicity. The in vitro Comet assay seems to be less sensitive than the in vitro chromosomal aberration test.

Crystal growth studies of $SF_6$ clathrate hydrate ($SF_6$ 하이드레이트 결정의 성장 특성에 대한 연구)

  • Lee, Yoon-Seok;Lee, Ju-Dong;Lee, Bo-Ram;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Kim, Young-Seok;Yoon, Seog-Young;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.228-236
    • /
    • 2009
  • In this study, we investigated morphological characteristics of $SF_6$ clathrate hydrate crystals to understand its formation and growth mechanism. $SF_6$ clathrate hydrate crystals were formed in high-pressure reaction cell charged with pure water and $SF_6$ gas at constant pressure and temperature. Two-phase ($SF_6$ gas/aqueous solution) and three-phase ($SF_6$ gas/aqueous solution/$SF_6$ liquid) conditions were investigated, In both conditions, dendritic shape hydrate crystals were grown as like fibriform crystals along upward growth direction at the gas/aqueous solution interface. In the case of the reaction process of three-phase condition, when the $SF_6$ gas bubbles which were generated in $SF_6$ liquid phase due to the reduction of reaction cell pressure stuck to the gas/aqueous interfaces, the hydrate phase were appeared at the surface of the bubbles. This paper presents the detail growth characteristics of $SF_6$ hydrate crystals including crystal nucleation, migration, growth and interference.

The Effect of IGF-1 on ALP Activity of MC3T3-E1 Cell (MC3T3-E1세포의 ALP activity에 대한 IGF-I의 영향)

  • Lee, Hu-Jung;Lee, Jae-Mok;Choi, Byung-Ju;Yu, Hyun-Mo;Shu, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.669-684
    • /
    • 1997
  • Polypeptide growth factors belong to a class of potent biologic mediators which regulate cell differentiation, proliferation, migration and metabolism. IGF-I is polypeptides secreted by skeletal cells and is considered as regulators of bone formation. The purpose of this study is to evaluate the effects of IGF-I on bone nodule formation and alkaline phosphatase activity of MC3T3-E1 cells. MC3T3-E1 cells were seeded at $1{\times}10^4$ cells/well, $1{\times}10^5$ cells/well in alpha-modified Eagle medium containing 10% fetal bovine serum, 10 mM ${\beta}-glycerophosphate$ and $5O{\mu}g/ml$ of ascorbic acid. Before 48 hours of indicated time, medium were changed with serum free medium. After 24 hours, 0.1, 1, 10 ng/ml IGF-I were added to the cells and cultured for 3, 7, 14, 21, 28 days. And histochemical analysis was done and ALP activity was measured and was expressed as nmol/min/mg of protein. The bone nodule formation in MC3T3-E1 cells of IGF-I was seen at 21, 28 days, but there were no difference between control group and experimental groups. The ALP activity decreased when it is compare to control 2 group except for 1 ng/ml, 10 ng/ml IGF-I of 21-day-groups and 1 ng/ml IGF-I of 28-day-groups. Dose response effects of IGF-I of ALP activity in MC3T3-E1 cells were seen the highest ALP activity at 1ng/ml until 21days and the highest ALP activity at 10 ng/ml of 28 daygroups. The peak times were seen at 7-day group, 14-day group on control group and experimental group respectively, and 1 ng/ml group was the highest ALP activity, From the above results, IGF-I was not seen notable effect on bone nodule formation and decreased ALP activity of MC3T3-E1 cells but the use of IGF-I to mediate biological stimulation of MC3T3-E1 cells shows promise for future therapeutic application.

  • PDF

High Expression of HIF-1α, BNIP3 and PI3KC3: Hypoxia-Induced Autophagy Predicts Cholangiocarcinoma Survival and Metastasis

  • Thongchot, Suyanee;Yongvanit, Puangrat;Loilome, Watcharin;Seubwai, Wanchana;Phunicom, Kutcharin;Tassaneeyakul, Wichittra;Pairojkul, Chawalit;Promkotra, Wisuttiphong;Techasen, Anchalee;Namwat, Nisana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5873-5878
    • /
    • 2014
  • Hypoxia and autophagy are known to facilitate tumor progression. We here aimed to investigate the role of hypoxia-associated autophagy in cholangiocarcinoma (CCA) survival and metastasis. Immunostaining of hypoxic-responsive proteins (HIF-$1{\alpha}$ and BNIP3) and a key regulator of autophagy (PI3KC3) were examined in CCA tissues and their expression levels were compared with clinicopathological parameters. A hypoxia mimicking condition ($CoCl_2$ treatment) was also tested regarding CCA cell functions. Our results showed that HIF-$1{\alpha}$ (66%), BNIP3 (44%) and PI3KC3 (46%) showed strong staining in human CCA tissues. Positive expression of HIF-$1{\alpha}$ (p=0.033), BNIP3 (p=0.040) and PI3KC3 (p=0.037) was significantly correlated with lymph node metastasis. HIF-$1{\alpha}$ was well associated with BNIP3 (r=0.3, p<0.01) and PI3KC3 (r=0.2, p<0.01). The survival rates of patients who were positive with HIF-$1{\alpha}$ (p=0.047) or co-expressed HIF-$1{\alpha}$ and BNIP3 (p=0.032) or HIF-$1{\alpha}$ and PI3KC3 (p=0.043) were significantly greater than in the negative groups. CCA cells treated with $CoCl_2$ showed an increase in HIF-$1{\alpha}$, BNIP3, PI3KC3 and LC3-II, with increased cell migration and pFAK levels. These data suggest that hypoxia associated autophagy enhances CCA metastasis, resulting in a poor prognosis of CCA.

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Characterization for calmodulin binding activity of IQ motifs on the IQGAP3 (IQGAP3에 존재하는 IQ 부위의 칼모듈린 결합 특성)

  • Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.333-338
    • /
    • 2012
  • IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known $Ca^{2+}$-independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a $Ca^{2+}$-independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has $Ca^{2+}$-dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with $Ca^{2+}$/CaM or apoCaM.