• 제목/요약/키워드: Cell hypoxia

검색결과 313건 처리시간 0.029초

Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins

  • Mira Hammad;Alexis Veyssiere;Sylvain Leclercq;Vincent Patron;Catherine Bauge;Karim Boumediene
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.304-314
    • /
    • 2023
  • Background and Objectives: Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results: In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions: We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.

The Influence of Bcl-3 Expression on Cell Migration and Chemosensitivity of Gastric Cancer Cells via Regulating Hypoxia-Induced Protective Autophagy

  • Hu, Lin;Bai, Zhigang;Ma, Xuemei;Bai, Nan;Zhang, Zhongtao
    • Journal of Gastric Cancer
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2020
  • Purpose: Gastric cancer is a highly metastatic malignant tumor, often characterized by chemoresistance and high mortality. In the present study, we aimed to investigate the role of B-cell lymphoma 3 (Bcl-3) protein on cell migration and chemosensitivity of gastric cancer. Materials and Methods: The gastric cancer cell lines, AGS and NCI-N87, were used for the in vitro studies and the in vivo studies were performed using BALB/c nude mice. Western blotting, wound healing assay, Cell Counting Kit-8 assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to evaluate the role of Bcl-3 in gastric cancer. Results: We found that the protein expression of hypoxia (HYP)-inducible factor-1α and Bcl-3 were markedly upregulated under hypoxic conditions in both AGS and NCI-N87 cells in a time-dependent manner. Interestingly, small interfering RNA-mediated knockdown of Bcl-3 expression affected the migration and chemosensitivity of the gastric cancer cells. AGS and NCI-N87 cells transfected with si-RNA-Bcl-3 (si-Bcl-3) showed significantly reduced migratory ability and increased chemosensitivity to oxaliplatin, 5-fluorouracil, and irinotecan. In addition, si-Bcl-3 restored the autophagy induced by HYP. Further, the protective role of si-Bcl-3 on the gastric cancer cells could be reversed by the autophagy inducer, rapamycin. Importantly, the in vivo xenograft tumor experiments showed similar results. Conclusions: Our present study reveals that Bcl-3 knockdown inhibits cell migration and chemoresistance of gastric cancer cells through restoring HYP-induced autophagy.

가자(訶子) 추출물과 그 유효성분 갈산이 근분화에 미치는 영향 (Investigation of the effect of Terminalia chebula fruit extract and its active ingredient, gallic aicd on muscle differentiation)

  • 천성혜;이효성;한효상;김기광
    • 대한본초학회지
    • /
    • 제34권2호
    • /
    • pp.59-66
    • /
    • 2019
  • Objectives : Decrease in muscle mass and loss of muscle function due to aging are associated with various diseases. As interest in healthy aging increases, efforts to prevent and treat muscle hypoxia as an illness are increasing. Considering the physical limitations, a pharmacologic approach to the treatment of myopenia is needed. Methods : Terminalia chebula Rets has a wide range of pharmacological effects and is used as a medicinal product in traditional medicine. However, the drug effect on the treatment of muscle disorders has not been revealed. The purpose of this study was to evaluate the value of water extract of Terminalia chebula (WETC) as a therapeutic agent to relieve symptoms of muscle hypoxia. Results : WETC showed strong radical scavenging ability. In addition, WETC increased cell activity of myoblast, and we observed that WETC induces myoblast differentiation by immunoblot analysis using differentiation protein markers as well as cell morphology of myoblast. Based on these results, we examined the effect of chebulic acid, chebulagic acid, gallic acid, geraniin, and punicalagin on cell activity and differentiation of myoblasts. Gallic acid significantly increased cell activity of myoblast, and it was found to be an effective substance which not only induces myoblast differentiation but also promotes proliferation. Conclusions : We suggest that the WETC with antioxidant effect and its indicator gallic acid on cell activity, proliferation and differentiation of myoblast can be studied and developed as a food and medicine for prevention and treatment of various muscle diseases.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

생지황(生地黃)이 혈관신생, 세포생존 및 염증관련 단백질발현에 미치는 영향 (The Effects of Rehmannia glutinosa on the Protein Expression Related to the Angiogenesis, Cell Survival and Inflammation)

  • 김성범;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제19권3호통권31호
    • /
    • pp.22-33
    • /
    • 2006
  • Objective : Angiogenesis induced by hypoxia and inflammation are an essential process of solid tumors and psoriasis. We researched the HIF-1 ${\alpha}$ (hypoxia inducible factor 1 alpha), VEGF(Vascular Endothelial Growth Factor), survival related PI3K-Akt, and inflammation related COX-2 protein expressions to get the information of the mechanism and effects of Rehmannia glutinosa in HepG2 and HaCaT cell lines. Method : To investigate the roles of the Rehmannia glutinosa extract, we performed MTS assay and western blots using HaCaT cells and HepG2 cells. HaCaT cells and HepG2 cells were treated with $50{\mu}g/ml$ and $100{\mu}g/ml$ Rehmannia glutinosa extracts. After 4hrs, HaCaT cells were treated with IGF-II protein for 24hrs and HepG2 cells were treated with $CoCl_2$. Results : 1. We could ohserve that the reduction of the protein level of HIT-1 ${\alpha}$ induced by IGF-II in HaCaT cells. 2. We Could ohserve that the decreased PI3K-Akt and COX-2 expression level by Rehmannia glutinosa extracts treated in HaCaT cells independently ith ERK1/2. 3. We could observe that the reduction of the protein level of HIF-1 ${\alpha}$ induced by $CoCl_2$ in HepG2 cells. Conclusion : These results suggest that Rehmannia glutinosa extracts contributes to the anti-survival pathway and anti-inflammatory activities. Also, we could assume that Rehmannia glutinosa act as anti-inflanmmatory or anti-hypoxia agents via reduction of COX-2 and HIF-1 ${\alpha}$.

  • PDF

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival

  • Park, Hyun-Sung
    • Toxicological Research
    • /
    • 제24권2호
    • /
    • pp.101-107
    • /
    • 2008
  • Studies on hypoxia-signaling pathways have revealed novel Fe(II) and $\alpha$-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible $Factor-\alpha(HIF-\alpha)$ protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or $\alpha$-ketoglutarate. Activity of $HIF-\alpha$ is repressed by two hydroxylases. One is $HIF-\alpha$ specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain(PHD). The other is $HIF-\alpha$ specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1(FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of $HIF-\alpha$ can be increased during detoxification process. The importance of $HIF-\alpha$ in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.

Expression of Hypoxia-inducible Factor Prolyl Hydroxylase 3 HIFPH3 in Human Non-small Cell Lung Cancer (NSCLC) and Its Correlation with Prognosis

  • Chu, Xiao;Zhu, Cheng-Chu;Liu, Hui;Wang, Jiao-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5819-5823
    • /
    • 2014
  • Purpose: To investigate the expression of hypoxia-inducible factor prolyl hydroxylase 3 (HIFPH3) in non-small cell lung cancer (NSCLC) and explore the correlation of HIFPH3 expression with lymph node metastasis and microvessel density (MVD). Materials and Methods: A total of 73 cases of NSCLC specimens, 24 cases of para-cancerous tissues, and 20 normal pulmonary tissues were collected for HIFPH3 and CD31 immunohistochmical (IHC) study. Microvessel density (MVD) of the NSCLC tissues was also determined based on the expression of CD31. Results: The expression of HIFPH3 in carcinoma tissue was statistically higher than para-cancerous and normal pulmonary tissues (${\chi}^2=48.806$, p<0.05). Compared withthe negative lymph node metastasis group, the lymph node metastasis group showed significantly higher HIFPH3 expression (${\chi}^2=6.300$, p<0.05). The strong HIFPH3+group displayed a significantly higher MVD than weak HIFPH3+ and HIFPH3- groups (p<0.05). No differences in positive HIFPH3 expression were noted regarding the tumor diameter, age, smoking status, gender of NSCLC patients, tumor size, histopathology, or differentiation. Conclusions: HIFPH3 expression in human NSCLC lesions is significantly higher than that in para-cancerous and normal lung tissues and is positively associated with lymph node metastasis and MVD.

Effect of Propofol Preconditioning on Hypoxic-Cultured Human Osteoblast

  • Yoon, Ji Uk;Shin, Sang Wook;Park, Bong Soo;Kim, Yong Ho;Woo, Mi Na;Yoon, Ji Young;Kim, Cheul Hong
    • 대한치과마취과학회지
    • /
    • 제14권2호
    • /
    • pp.107-114
    • /
    • 2014
  • Background: Angiogenesis has been recognized an essential precondition for osteogenesis. Because reduction and disruption of the blood supply to tissue cause tissue hypoxia, pathological bone loss affected by hypoxia often can occur in various clinical conditions. The effects of propofol on the process of osteogenesis have received little direct attention. Therefore, we investigated the effect of propofol on the growth and function of osteoblasts under hypoxic condition. Methods: After propofol (3, 30, $300{\mu}M$) preconditioning for 2 hours, hFOB 1.19 human osteoblast cells were cultured under 1 % oxygen tension for 48 hours. Using real time PCR and western blot analysis, we analyzed the expression of, BMP-2, TGF-${\beta}1$, type I collagen, osteocalcin, HIF-1s and Akt. Cell viability was also determined by MTT assay. Results: Propofol preconditioning on hypoxic-cultured osteoblast promoted the expressions of BMP-2, TGF-${\beta}1$, type I collagen and osteocalcin and induced hypoxia-mediated HIF-1 activation and the expression of Akt protein. Propofol with $300{\mu}M$ significant decreased cell viability compared to control. Conclusions: Clinically relevant concentrations of propofol are not cytotoxic to hypoxic osteoblasts in vitro. Propofol preconditioning on hypoxic-cultured osteoblast stimulates proliferation and differentiation of osteoblast through induced expression of BMP-2, TGF-${\beta}1$, type I collagen and osteocalcin. Propofol might promote angiogenesis and bone regeneration under hypoxic condition.

저산소 상태로 유도된 백서 뇌세포 배양에서 Minocycline의 뇌보호 효과 (Neuroprotective Effects of Minocycline in Rat Brain Cortical Cell Culture Induced by Hypoxia)

  • 하경아;양범석;김진경;김홍태;하성진;이종원;정혜리;김우택
    • Clinical and Experimental Pediatrics
    • /
    • 제46권11호
    • /
    • pp.1101-1106
    • /
    • 2003
  • 목 적 : 미노사이클린이 in vivo 연구에서 뇌보호 효과가 있는것으로 알려져 있어 본 연구에서는 미노사이클린이 저산소 상태로 유발된 백서 뇌세포 배양에서 고사를 억제하는 뇌보호 효과가 있는지를 알아보고자 하였다. 방 법: 임신 18일된 백서의 대뇌피질 신경세포를 배양하여 정상산소 상태군과 저산소 상태군으로 두 군으로 나누고, 정상산소 상태는 5% $CO_2$ 배양기에, 저산소 상태는 1% $CO_2$ 배양기에서 세포 수를 세면서 수일간 처리하여 현미경하에서 충분한 손상이 있다고 판단되면 두 군을 각각 대조군, 미노사이클린 $1{\mu}g/mL$, $10{\mu}g/mL$로 처리한 군으로 나누어서 실험하였다. TUNEL 및 DAPI 염색으로 세포 고사 상태를 통계학적으로 처리하였다. 결 과: 정상산소 상태군에서 대조군과 미노사이클린 $1{\mu}g/mL$ 투여군, 미노사이클린 $10{\mu}g/mL$ 투여군 3군 모두에서 통계학적으로 유의한 차이가 있었다(P<0.01). 저산소 상태군에서 대조군과 미노사이클린 투여군에서 통계학적으로 유의한 차이가 있었으나(P<0.01), 미노사이클린 투여군 간에는 통계학적으로 유의한 차이가 없었다(P>0.05). 정상산소 상태군과 저산소 상태군간의 대조군과 미노사이클린 $1{\mu}g/mL$ 투여군의 비교에서는 정상산소 상태군이 저산소 상태군보다 평균이 낮아 통계학적으로 유의한 차이가 있었다(P<0.01). 정상산소 상태군과 저산소 상태군간의 미노사이클린 $10{\mu}g/mL$ 투여군의 비교에서는 정상산소 상태군이 저산소 상태군보다 다소 평균이 낮았으나 통계학적으로 유의성은 없었다(P>0.05). 결 론 : 결론적으로 미노사이클린은 고사를 억제하는 기전으로 저 산소 상태나 정상 산소 상태에서 뇌보호 효과가 있었다.