• Title/Summary/Keyword: Cell formation

Search Result 4,024, Processing Time 0.029 seconds

Transcriptome Analysis of Streptococcus mutans and Separation of Active Ingredients from the Extract of Aralia continentalis (Streptococcus mutans의 전사체 분석과 독활 추출물로부터 활성 성분 분리)

  • Hyeon-Jeong Lee;Da-Young Kang;Yun-Chae Lee;Jeong Nam Kim
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.538-548
    • /
    • 2023
  • The research has been conducted on the isolation of antimicrobial compounds from plant natural extracts and their potential application in oral health care products. This study aimed to investigate the antimicrobial mechanism by analyzing the changes in gene expression of Streptococcus mutans, a major oral pathogen, in response to complex compounds extracted from Aralia continentalis and Arctii Semen using organic solvents. Transcriptome analysis (RNA-seq) revealed that both natural extracts commonly upregulated or downregulated the expression of various genes associated with different metabolic and physiological activities. Three genes (SMU_1584c, SMU_2133c, SMU_921), particularly SMU_921 (rcrR), known as a transcription activator of two sugar phosphotransferase systems (PTS) involved in sugar transport and biofilm formation, exhibited consistent high expression levels. Additionally, component analysis of the A. continentalis extract was performed to compare its effects on gene expression changes with the A. Semen extract, and two active compounds were identified through gas chromatography-mass spectrometry (GC-MS) analysis of the active fraction. The n-hexane fraction (ACEH) from the A. continentalis extract exhibited antibacterial specificity against S. mutans, leading to a significant reduction in the viable cell counts of Streptococcus sanguinis and Streptococcus gordonii among the tested multi-species bacterial communities. These findings suggest the broad-spectrum antibacterial activity of the A. continentalis extract and provide essential foundational data for the development of customized antimicrobial materials by elucidating the antibacterial mechanism of the identified active compounds.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Secreotory Leukocyte Protease Inhibitor Regulates Bone Formation via RANKL, OPG, and Runx2 in Rat Periodontitis and MC3T3-E1 Preosteoblast

  • Seung-Yeon Lee;Soon-Jeong Jeong;Myoung-Hwa Lee;Se-Hyun Hwang;Do-Seon Lim;Moon-Jin Jeong
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.282-295
    • /
    • 2023
  • Background: Secretory leukocyte protease inhibitor (SLPI) protects tissues from proteases and promotes cell proliferation and healing. SLPI also reduces periodontal inflammation and alveolar bone resorption by inhibiting proinflammatory cytokine expression in rat periodontal tissues and osteoblasts. However, little is known of the role of SLPI in the expression of osteoclast regulatory factors from osteoblasts, which are crucial for the interaction between osteoblasts and osteoclasts. Therefore, we aimed to determine the effects of SLPI on the regulation of osteoclasts and osteoblasts in LPS-treated alveolar bone and osteoblasts. Methods: Periodontitis was induced in rats using LPS. After each LPS injection, SLPI was injected into the same area. Immunohistochemical analysis was performed with antibodies against SLPI, RANKL, OPG, and Runx2 in the periodontal tissue. RT-PCR and western blotting were performed to determine the expression levels of SLPI, RANKL, OPG, and Runx2 in LPS- and SLPI/LPS-treated MC3T3-E1 cells. SLPI/LPS-treated MC3T3-E1 cells were also stained with Alizarin Red S. Results: Immunohistochemical analysis showed that the expression levels of SLPI, OPG, and Runx2 were higher while that of RANKL was lower in the LPS/SLPI group relative to those in the LPS group. The mRNA and protein expression of SLPI, OPG, and Runx2 was higher in SLPI/LPS/MC3T3-E1 cells than in LPS/MC3T3-E1 cells, and RANKL expression was lower. During differentiation, OPG and Runx2 protein levels were higher whereas RANKL levels were lower in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 cells on days 0, 4, 7, and 10. In addition, mineralization and matrix deposition were higher in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 on days 7 and 10. SLPI decreased RANKL expression in LPS-treated alveolar bone and osteoblasts but increased the expression of OPG and Runx2. Conclusion: SLPI can be considered as a regulatory molecule that indirectly regulates osteoclast activation via osteoblasts and promotes osteoblast differentiation.

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Anti-inflammatory Activity of Sargassum micracanthum Water Extract (잔가시 물 추출물의 항염증 효과)

  • Jeong, Da Hyun;Kang, Bo Kyeong;Kim, Koth Bong Woo Ri;Kim, Min Ji;Ahn, Dong Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • The anti-inflammatory effect of Sargassum micracanthum water extract (SMWE) was investigated using lipopolysaccharide (LPS)-induced inflammatory response in this study. The murine macrophage cell line RAW 264.7 cells were used and MTT assay was performed to measure the cell proliferation ability. The secretion of nitric oxide (NO), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and IL-$1{\beta}$ was measured in LPS-induced RAW 264.7 cells by ELISA. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear transcription factor-kappa B p65 protein was studied by immunoblotting. The Balb/c mice were used for an acute toxicity test, and imprinting control region mice were purchased to evaluate a croton oil-induced ear edema. As a result, there was no cytotoxicity in the macrophage proliferation treated with SMWE compared to the control. NO levels decreased with increasing concentration of SMWE and were inhibited over 50%. Moreover, the secretion of IL-6, TNF-${\alpha}$, and IL-$1{\beta}$ was suppressed in a dose-dependent manner, especially, IL-$1{\beta}$ inhibition activity was over 50% at 50 ${mu}g$/mL. The formation of ear edema of mice was reduced at the highest dose tested compared to that in the control. Moreover, in acute toxicity test, no moralities occurred in mice administered 5,000 mg/kg body weight of SMWE over 2 weeks observation period. These results suggested that SMWE may have significant effects on inflammatory factors and be potential anti-inflammatory therapeutic materials.

Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis (성게의 발생과 뼈대형성의 유전학적 연구)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 2001
  • The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

  • PDF

Bulnesia Sarmienti Aqueous Extract Inhibits Inflammation in LPS-Stimulated RAW 264.7 Cells (RAW 264.7세포에서 lipopolysaccharide로 유발시킨 염증반응에 대한 Bulnesia sarmienti 열수추출물의 억제효과)

  • Cheon, Yong-Pil;Mollah, Mohammad Lalmoddin;Park, Chang-Ho;Hong, Joo-Heon;Lee, Gee-Dong;Song, Jae-Chan;Kim, Kil-Soo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2009
  • Bulnesia sarmienti (BS), a traditional South American herbal medicine native to Gran Chaco, has been used to treat various human ailments. We investigated the cytotoxic activities and the inhibitory effects of BS bark extract(0, 50, 100 and $200\;{\mu}g/\;mL$) on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase (COX) and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) in the lipopolysaccharide (LPS) (100 ng/ml)-stimulated murine macrophage cell line RAW264.7. The levels of NO, COX, PGE2 production and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) were measured by ELISA kit. Cell viability, as measured by the MTT assay, showed that BS extract had no significant cytotoxicity in RAW264.7 cells. BS extract significantly inhibited the LPS-induced NO, $PGE_2$ and COX production accompanied by an attenuation of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ formation in macrophages. These results suggest that BS extract has potential as an herbal medicine for the treatment of inflammatory diseases.

Effects of Endocrine Disruptors (NP, DBP and BPA) on Sperm Characteristics and Development of IVF Embryos in Pig

  • Yuh, In Suh;Cheong, Hee Tae;Kim, Jong Taek;Park, In Chul;Park, Choon Keun;Yang, Boo Keun
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.237-247
    • /
    • 2013
  • This study was to examine single or combined in vitro effects of environmental endocrine disruptors on boar sperm characteristics, oxidative stress damage in sperm and development of porcine IVF embryos. Addition of various concentration of NP (10, 20, $30{\mu}M$), DBP (10, 50, $100{\mu}M$) and BPA (1, 5 or $10{\mu}g/ml$) on boar sperm characteristics such as percentages of sperm motility, viability, membrane integrity and mitochondrial activity were dose-dependently decreased within 3, 6 or 9 hr incubation period (p<0.05). The overall detrimental effects increased with incubation time increasement. NP, DBP and BPA showed the detrimental effects on sperm membrane and mitochondria of energy production organelles affecting cell viability with the dependancy of dose and incubation time. In combination effects, NP ($10{\mu}M$) + DBP ($10{\mu}M$) significantly decreased boar general sperm characteristics for 3 or 6 hr incubation period compared with control (p<0.05). When both of NP and DBP concentrations (NP; $30{\mu}M$, DBP; $100{\mu}M$) increase, the detrimental effects on sperm characteristics were larger than those of low concentration combination (p<0.05). The inhibitory effects of NP ($30{\mu}M$) + BPA ($10{\mu}g/ml$) on sperm characteristics were larger than those of NP ($10{\mu}M$) + BPA ($1{\mu}g/ml$) (p<0.05). DBP ($100{\mu}M$) + BPA ($10{\mu}g/ml$) decreased sperm characteristics compared with the low concentration combination (DBP $10{\mu}M$ + BPA $1{\mu}g/ml$, p<0.05). This result indicates the detrimental effects of both chemicals on sperm characteristics were dose dependent. Addition of NP ($30{\mu}M$) + DBP ($100{\mu}M$), NP ($30{\mu}M$) + BPA ($10{\mu}g/ml$), DBP ($10{\mu}M$) + BPA ($1{\mu}g/ml$) or DBP ($100{\mu}M$) + BPA ($10{\mu}g/ml$) significantly increased lipid peroxidation for 3 or 6 hr incubation period (p<0.05) compared with no addition control. NP (${\geq}20{\mu}M$) decreased the percentages of IVF embryo development from morulae and blastocyst stages (p<0.05) and its detrimental effects were dose-dependant. BPA 0, 1, 5 or $10{\mu}g/ml$ decreased significantly and dose-dependently the percentage of morulae plus and blastocysts (p<0.05). Combinations of DBP ($100{\mu}M$) plus NP ($30{\mu}M$) and DBP ($100{\mu}M$) plus BPA ($10{\mu}g/ml$) did not affect on morulae and blastocyst development, but NP ($30{\mu}M$) plus BPA ($10{\mu}g/ml$) has significant detrimental effect on embryo development at these stages (p<0.05). These overall results indicate that the partial detrimental effects on boar sperm characteristics and embryo development by NP, DBP, BPA or the combination of these chemicals might be due to the increasement of lipid peroxidation and free radical formation in the cell and there were no specific interaction effects on boar sperm and embryo degeneration among the combined treatments.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.