Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis

성게의 발생과 뼈대형성의 유전학적 연구

  • Lee, Youn-Ho (Korea Ocean Research and Development Institute, Polar Sciences Laboratory)
  • 이윤호 (한국해양연구원 극지연구본부)
  • Published : 2001.11.30

Abstract

The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

바닷가에서 흔히 볼 수 있는 성게는 중요한 수산자원일 뿐만 아니라 발생학 연구가 시작된 1800년대부터 지금까치 100여 년 이상 해양생물 발생연구의 모델이 되어 왔다. 최근 성게 배아(embryo)는 환경오염이나 독성 연구의 모델로서도 자주 이용된다. 성게가 널리 연구대상이 되는 이유는, 시료 확보와 배아의 실험실 배양이 쉽고, 세포의 이동과 기관 형성 등 배아의 발달과정이 명확히 관찰되며, 배아에 대한 세포 조작과 유전자 조작이 가능하다는 실험모델로서의 장점 때문이다. 또한 ,성게가 생물계 내에서 갖는 진화적, 발생학적 중요성 역시 성게 연구를 활발하게 하는 주된 이유가 되고 있다. 성게는 전구동물에서 후구동물이 분리되어 진화한 초기 단계를 대표하는 생물군이며, 부유성섭식유생(planktotrophic larvae) 시기를 거쳐 발달하는 대다수 해양무척추동물을 대표하는 생물군이기도 하다. 성게의 수정란은 약 7시간 후 60세포기에 이르며 이후 상실기, 포배기, 낭배기를 거쳐 플루테우스(pluteus)유생으로 발달한다. 성게의 60세포기 배아에는 이미 서로 다른 기관으로 발달할 5개의 구역(territories; fate map)이 정해진다. 각 구역의 세포들은 구역 특유의 유전자를 발현하게 된다. 식물극(vegetal pole)에 위치한 마이크로미어(micromere) 세포군은 포배 중기에 포배강 내로 들어가 일차중배엽세포(primary mesenchyme cells, PMCs)를 형성하고 이 후 유생의 뼈대(spicule)를 만든다. PMCs에서는 뼈대형성에 관여하는 SM3O, SM37, SM50, PM27, msp 130등의 유전자가 발현된다. 이들 중 SM37과 SM50은 뼈대의 얼개(matrix)를 만드는 염기성 단백질로서 Glycine, Proline, Glutamine이 많은 반복구조를 갖는다. 이 두 유전자는 발현시기와 기능이 유사하여 과거 한 유전자에서 진화된 유전자군(gene family)으로 생각된다. 성게의 발생 관련 유전자의 발현과 기능에 대한 연구는 해양무척추동물의 부유성섭식유생 발생에 대한 분자수준의 이해를 가능케 하며, 연체동물의 껍질 형성, 어류의 뼈대 형성, 척추동물의 뼈대 형성 등 생물계에서 공통적으로 보이는 소위 생광물화(biomineralization)의 유전학적 기전을 이해하는데 커다란 도움이 되고 있다.

Keywords

References

  1. 국립수산진흥원 동해수산연구소 사업보고서 v.2000 유용양식종의 종묘생산 기술개발 및 종보존. I. 종묘생산 보급 이채성;이정용;김완기;김기승;김두호;박세규
  2. 하국해양학회지-바다 v.3 성게 알을 이용한 생물검정에 의한 연안해수 수질평가에 관한 연구 유춘만
  3. Nature v.387 Evidence for a clade of nematodes, arthropods and other moulting animals Aguinaldo, A.M.;J.M. Turbeville;L.S. Linford;M.C. Rivera;J.R. Garey;R.A. Raff;J.A. Lake
  4. J. Biol. Chem. v.269 Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus Akasaka, K.;T.N. Frudakis;C.E. Killian;N.C. George;K. Yamasu;O. Khaner;F. Wilt
  5. Development v.101 Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein of the sea urchin embryo Anstrom,J.A.;J.E. Chin;D.S.Leaf;A.L. Parks;R.A. Raff
  6. Nature v.381 Control of crystal phase switching and orientation by soluble mollusc-shell proteins Belcher, A.M.;X.H. Wu;R.J. Christensen;P.K. Hansma;G.K. Stucky;D.E. Morse
  7. J. Cell. Biol. v.102 The organic matrix of the skeletal spicule of sea urchin embryos Benson, S.C.;N.C. Benson;F. Wilt
  8. Dev. Biol. v.120 A lineage0specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression Benson, S.C.;H.M. Sucov;L. Stephens;E.H. Davidson;F. Wilt
  9. Sber. Ges. Morph. Physiol. Munchen v.4 Ueber den Antheil des Spermatozoon an der Theilung des Eies Bovery, T.H.
  10. Sinauer Associates Invertebrates Brusca, R.C.;G.J. Brusca
  11. Development v.125 Specification of cell fate in the sea urchin embryo: Summary and some proposed mechanisms Davidson,E.H.;R.A. Cameron;A. Ransick
  12. Arch. Environ. Contam. Toxicol v.18 Comparative sensitivity of sea urchin sperm bioassays to metals and pesticides Dinnel, P.A.;J.M. Link;Q.J. Stober;M.W. Letoumeau;W.E. Roberts
  13. Foundations of Experimental Embryology The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formations Driesch, H.;B.H. Willier(eds.);J.M. Oppenheimer(eds.)
  14. Dev. Biol. v.140 The regulation of primary mesenchyme cell patterning Ettensohn, C.A.
  15. Reproduc. Biol. of Inv. v.VII The morphogenesis of the skeletal system of the sea ruchin embryo Ettensohn, C.A.;K.A. Guss;P.G. Hodor;K.M. Malinda;J. R. Colloier(ed.)
  16. J. Cell. Biol. v.109 A calcium-binding, asparaine linked oligosaccharide is involved in skeleton formation in the sea urchin embryo Farach-Carson, M.C.;D.D. Carson;J.J. Collier;W.J. Lennarz;H.R. Park;G.C. Wright
  17. Comptes Rendus v.84 Sur le premier development d'une Etoil de mer Fol, M.H.
  18. Dev. Biol. v.147 Characterization and expression of a gene encoding a 30.6KD Strongylocentrotus purpuratus spicule matrix protein George, N.C.;C.E. Killian;F.H. Wilt
  19. Ontogeny and phylogeny Gould, S.J.
  20. Development v.124 Skeletal morphogenesis in the sea urchin embryo: Regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues Guss, K.A.;C.A. Ettensohn
  21. Dev. Biol. v.168 Structure, expression and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule Harkey, M.A.;K. Klueg;P. Sheppard;R.A. Raff
  22. Morph. jb. v.1 Beitrage zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen Eies Hertwig, O.
  23. Pubbl. Stn. Zool. Napoli. v.14 Uber die Determination im Verlaufe der Eiasche bei Seeigeln Horstadius, S.
  24. Biol. Rev. v.14 The mechanics of sea urchin development studied by operative methods Horstadius, S.
  25. The invertebrates Hyman, L.H.
  26. Cell Diff. v.19 A large calcium-binding protein associated with the larva spicule of the sea urchin embryo Iwata, M.;E. Nakano
  27. Dev. Biol. v.145 The corrected structure of the SM50 spicule matrix of Strongylocentrotus purpuratus Katoh-Fukuki, Y.;T. Noce;T. Ueda;Y. Fujiwara;N. Hashimoto;T. Higahinakagawa;C.E. Killian;B.T. Livingston;F.H. Wilt;S.C. Benson;H.M. Sucov;E.H. Davidson
  28. Dev. Biol. v.133 The accumulation and translation of spicule matrix protein mRNA during sea urchin embryo development Killian, C.E.;F.H. Wilt
  29. J. Biol. Chem. v.271 Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicule Killian, C.E.;F.H. Wilt
  30. Dev. Biol. v.121 Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo Leaf, D.S.;J.A. Anstrom;J.E. Chin;M.A. Harkey;R.M. Showman;R.A. Raff
  31. Dev. Growth Differ. v.41 SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene Lee, Y.H.;R.J. Britten;E.H. Davidson
  32. Development v.121 Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specigication in the sea urchin embryo Makabe, K.W.;C.B. Kirchhamer;R.J. Britten;E.H. Davidson
  33. Biol. Bull. v.171 A centennial debt of developmental biology to the sea urchin Monroy, A.
  34. Am. Zool. v.15 Spicule formation by isolated micromeres of the sea urchin embryo Okazaki, K.
  35. J. Biol. Chem. v.265 Promoter structure and protein sequence of msp130, a lipid-anchored sea urchin glycoprotein Parr, B.A.;A.L. Park;R.A. Raff
  36. BioEssays. v.19 Set-aside cells in maximal indirect development: Evolutionary and developmental significance Peterson, K.J.;R.A. Cameron;E.H. Davidson
  37. Science v.259 A complete second gut induced by transplanted micromeres in the sea urchin embryo Ransick, A.;E.H. Davidson
  38. J. Biol. Chem. v.272 Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens Shen, X.;A.M. Belcher;P.K. Hansma;G.D. Stucky;D.E. Morse
  39. Nature v.399 Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites Smith, B.L.;T.E. Schaffer;M. Viani;J.B. Thompson;N.A Frederick;J. Kindt;A. Belcher;G.D. Stucky;D.E. Morse;P.K. Hansma
  40. Foundations of Experimental Embryology Induction of embryonic primordia by implantation of organizers from a different species Spemann, H.;H. Mangold;B.H. Willier(eds.);J.M. Oppenheimer(eds.)
  41. Dev. Biol. v.120 A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein Sucov. H.M.;S. Benson;J.J. Robinson;R.J. Britten;F. W.ilt;E.H. Davidson
  42. Dev. Growth Diff. v.21 Total call number and number of the primary mesenchyme cell in whole, 1/2 and 1/4 larvae of Clypeaster japonicus Takahashi, M.M.;K. Okazaki
  43. Dev. Biol. v.111 Sequential expression of germ-layer specific molecules in the sea urchin embryo Wessel, G.M.;D.R. McClay
  44. Development v.128 A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo Zhu, X.;G. Mahairas;M.I. llies;R.A. Cameron;E.H. Davidson;C.A. Ettensohn