• Title/Summary/Keyword: Cell flocculation

Search Result 29, Processing Time 0.027 seconds

Utilization of Chitosan-glucan Complex Extracted from Ganoderma Iucidum Wastes as Bioflocculant (생물응집제로서 폐영지박 Chitosan-glucan 복합물의 이용성)

  • 오준현;조홍연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.770-776
    • /
    • 1995
  • For the purpose of development of non-toxic and biodegradable flocculant, chitosan complex was isolated from Ganoderma lucidum wastes. The isolated complex was identified as the expected chitosan-glucan complex by IR specta. The complex was extracted by treatment of 50% NaOH solution at 120$\circ$C for 5 hrs, namely optimal condition and solubilized with 2% acetic acid for fur-ther use as flocculant. Preliminary experiments showed that the solubilized complex had higher flocculation activity of 1.3 fold than commercial chitosan at 400 mg/l concentration in soybean curd wastewater. Also the solubilized complex removed 83% of MLSS and 60% of COD in the soybean curd wastewater treated by photosynthetic bacteria, 50% of turbidity and 21% of MLSS in sugar industry wastewater, and 90% of turbidity and 89% of MLSS in alcohol fermentation wastewater. Bacterial cell flocculation activities of the solubilized chitosan-glucan complex were 89% in Bacillus subtilis broth, 81% in Streptococcus lactis broth, and more than 90% in Escherichia coli broth after standing for 2 days. The results reveal that chitosan-glucan complex from Ganoderma lucidum wastes can substitute for commercial chitosan as non-toxic and biodegradable flocculant.

  • PDF

Real-time Micro-algae Flocculation Analysis Method Based on Lens-free Shadow Imaging Technique (LSIT) (렌즈프리 그림자 이미징 기술을 이용한 실시간 미세조류 응집현상 분석법)

  • Seo, Dongmin;Oh, Sangwoo;Dong, Dandan;Lee, Jae Woo;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • Micro-algae, one of the biological resources for alternative energy, has been heavily studied. Among various methods to analyze the status of the micro-algae including counting, screening, and flocculation, the flocculation approach has been widely accepted in many critical applications such as red tide removal study or microalgae resource study. To characterize the flocculation status of the micro-alga. A traditional optical modality, i.e., photospectrometry, measuring the optical density of the flocs has been frequently employed. While this traditional optical method needs shorter time than the counting method in flocculation status analysis, it has relatively lower detection accuracy. To address this issue, a novel real-time micro-algae flocculation analysis method based on the lens-free shadow imaging technique (LSIT) is introduced. Both single cell detection and floc detection are simultaneously available with a proposed lens-free shadow image, confirmed by comparing the results with optical microscope images. And three shadow parameters, e.g., number of flocs, effective area of flocs, and maximum size of floc, enabling quantification of the flocculation phenomenon of micro-alga, are firstly demonstrated in this article. The efficacy of each shadow parameter is verified with the real-time flocculation monitoring experiments using custom developed cohesive agents.

Optimal Strategy for Ethanol Production in Repeated Fed-batch Operation Using Flocculent Sacchromyces cerevisiae (응집성 Sacchromyces cerevisiae 를 이용한 반복 유가식 ethanol 생산에서의 최적 운전전략)

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Seo, Yong-Chang;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • We investigated the optimal strategy for ethanol production using flocculent Sacchromyces cerevisiae ATCC 96581. Considering the characteristic of flocculent yeast, a repeated fed-batch ethanol fermentation was designed, in which non-sterile glucose powder was fed every 12 hours and, after cell flocculation, new feeding medium was exchanged every 24 or 36 hours. We particularly compared this fermentation process with those when cell flocculation was not carried out. Finally, the maximal total ethanol production was 825 g-ethanol during 120 hours, in which the time interval of withdrawal-fill of feeding medium was 24 hours and cell flocculation was carried out.

Systematic Review on Application of Whey Towards Production of Galacto-oligosaccharide Using β-Galactosidase Enzyme from Pichia pastoris

  • Ramachandran, C;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.304-311
    • /
    • 2020
  • Galacto-oligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut, in addition to having various applications in the food industry. GOS are generally produced from lactose in a reaction catalyzed by β-galactosidase. Synthesis of GOS from whey permeate (WP) (ultrafiltration of whey, concentrated then spray dried) using surface engineered β-galactosidase in Pichia pastoris (P. pastoris) is a novel method to convert waste into a valuable product. Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them to functional components of cells. Surface engineered cells have many potential uses. The Flo1p flocculation functional domain, thought to be located near the N terminus, recognizes and adheres non-covalently to cell-wall components such as α-mannan carbohydrates, causing reversible aggregation of cells into flocs.

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Feasibility Study for Removal of Red Tide by Batch Fed Electron Beam Irradiation (회분식 전자빔 조사에 의한 적조제거 특성 연구)

  • Kang, Ho;Lim, Seon-Ae;Jeong, Ji-Hyun;Kim, Yu-Ri;Han, Beom-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • This study was carried out to assess the feasibility of the electron beam irradiation as a mean of red tide control in coastal water. Prorocentrum minimum, Prorocentrum micans, Cochlodinium polykrikoides, Heterosigma akashiwo, Alexnadrium catenella were selected and cultured for experiments, and red tide occurring in Tongyeong(2007. 8. 15) was also tested under the same conditions. The irradiation dose were 1 kGy, 2 kGy, 4 kGy and 8 kGy. The result showed 50~65% extinction in red tide cells was observed right after irradiation dose of 1 kGy and 86~97% within 1 day after irradiation, compared with control. Chlorophyll-a concentration of red tide was reduced by 50~64% immediately and it was drastically reduced up to 86~97% 1 day after irradiation. When the culture was irradiated at 1 kGy, 28~47% of s-protein was released immediately, and 77~138% was released 1day after irradiation. 77~212% of s-carbohydrate was excreted after 1 day while 16~45% of s-carbohydrate was excreted immediately. A transmission electron microscope(TEM) observation for the irradiated red tide revealed that the cell was destroyed and intracellular biopolymeric substance was leached out from the damaged cell as a result of electron beam irradiation. These results imply that electron beam irradiation is enable to control red tide by flocculation with extracellular biopolymer. The paralytic shellfish poisoning(PSP) toxin contents produced by Alexandrium catenella was decreased 48% by 1 kGy of electron beam irradiation compared with the unirradiated cells. As a result, electron beam irradiation was effective for detoxication as well as destruction of red tide.

Effects of CellCaSi and Bioflocculant on the Control of Algal Bloom (규산질다공체와 미생물응집제의 녹조제어 효과)

  • 박명환;이석준;윤병대;오희목
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2001
  • The effects of CellCaSi and bioflocculant on the control of algal bloom were investigated in enclosures in a small eutrophic pond. The bioflocculant produced by a bacterial strain S-2 was finally selected to remove Microcystis aeruginosa which was a dominant species of algal bloom in the pond. Enclosure experiment showed that phosphorus concentration decreased dramatically from $131\mu{g}\ell^{-1}$ (Control) to $1-14\mu{g}\ell^{-1}$ in three CellCaSi-enriched enclosures. Chlorophyll $-\alpha$ concentration also decreased from $215\mu{g}\ell^{-1}$ (Control) to $59\mu{g}\ell^{-1}$ by the addition of CellCaSi $(1g\ell^{-1}$, bioflocculant $(2ml\ell^{-1}$, calcium chloride $(1g\ell^{-1}$ and ferric chloride $(2mg\;Fe\ell^{-1})$ in Enclosure 4. From the results of the mouse acute toxicity test of the S-2 bioflocculant and the goldfish survival test in enclosures, it seems that both the S-2 bioflocculant and the CellCaSi do not show any severe toxicity in water system. Consequently, it was concluded that the bioflocculant and the CellCaSi could be used to control algal bloom in eutrophic waters by removing phosphorus and chlorophyll$-\alpha$.

  • PDF

Optimization of Semi-Batch Process for Ethanol Production (에타놀 생산을 위한 Semi-batch 발효 공정의 최적화)

  • Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 1983
  • As flocculent strains are likely to have considerable potential for internal cell recycle, kinetic studies on glucose medium with flocculent Saccharomyces uvarum were carried out in batch and continuous culture. Using a mathematical model, the kinetic parameters at each temperature and pH were estimated in order to establish optimal conditions. It was found that an overall optimum temperature for growth and ethanol production in the range 33-35$^{\circ}C$ was desirable. With regard to the effect of pH, ethanol production by S. uvarum was found to be relatively insensitive to pH value between 4 and 6, with an optimum pH of around 5. At these optimal conditions a maximum ethanol productivity of 12 g/$\ell$/h was determined using semi-batch process together with 5. uvarum.

  • PDF

Microbiological Characteristics of Wild Yeast Strain Pichia anomala Y197-13 for Brewing Makgeolli

  • Kim, Hye Ryun;Kim, Jae-Ho;Bai, Dong-Hoon;Ahn, Byung Hak
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • Makgeolli is a traditional cloudy-white Korean rice wine with an alcohol content of 6~7%. The present study investigated the morphological characteristics, carbon-utilizing ability, fatty acid composition, alcohol resistance, glucose tolerance, and flocculence of Saccharomyces cerevisiae Y98-5 and Pichia anomala Y197-13, non-S. cerevisiae isolated from Nuruk, which is used in brewing Makgeolli. Similar morphological characteristics were observed for both isolated wild yeast strains; and the carbon source assimilation of Y197-13 differed from that of other P. anomala strains. Strain Y197-13 was negative for D-trehalose, mannitol, arbutin, I-erythritol, and succinic acid. The major cellular fatty acids of strain Y197-13 included C18:2n6c (33.94%), C18:1n9c (26.97%) and C16:0 (20.57%). Strain Y197-13 was Crabtree-negative, with 60% cell viability at 12% (v/v) ethanol. The flocculation level of strain Y197-13 was 8.38%, resulting in its classification as a non-flocculent yeast.