• Title/Summary/Keyword: Cell division

Search Result 5,255, Processing Time 0.032 seconds

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita;Islam, Md. Ariful;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.669-679
    • /
    • 2016
  • N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

Oxidation Properties of Cobalt Protective Coatings on STS 444 of Metallic Interconnects for Solid Oxide Fuel Cells (고체산화물 연료전지 금속연결재용 STS 444의 코발트 보호막 산화 특성)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Lee, Seung-Bok;Yoo, Young-Sung;Song, Rak-Hyun;Shin, Dong-Ryul;Lee, Dok-Yol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.455-463
    • /
    • 2009
  • 코발트 보호막 코팅이 적용된 페라이트계 스테인리스 스틸인 STS 430과 STS 444 소재에 대해 고체산화물 연료전지용 금속연결재로서의 고온 산화 특성에 대해 살펴보았다. 코발트 코팅층은 $800^{\circ}C$ 고온 산화 후 코발트 산화물 및 $Co_2CrO_4$, $CoCr_2O_4$, $CoCrFeO_4$ 등과 같은 코발트가 함유된 스피넬 상을 형성하였다. 또한 페라이트계 스테인리스 스틸과 코발트 코팅의 계면에서 크롬과 철이 함유된 치밀한 산화층을 형성하여 금속연결재 표면의 스케일 성장속도를 감소시키고 금속연결재 내에 함유된 크롬의 외부 확산을 효과적으로 억제하였다. 한편 STS 430은 고온 산화 후 표면에 형성된 스케일 하부에 $SiO_2$와 같은 내부 산화물이 형성된 반면 STS 444는 표면 스케일 이외에 다른 내부 산화물은 확인되지 않았으며 고온에서의 면저항 측정 결과, 코발트가 코팅된 STS 444의 전기 전도성이 STS 430 보다 우수한 것으로 나타났다.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Purification and Characterization of CDMHK, a Growth Inhibitory Molecule Against Cancer Cell Lines, from Myxobacterium sp. HK1 Isolated from Korean Soil

  • LEE HAN-KI;LEE IN-HYE;YIM JEE-SUN;KIM YONG-HO;LEE SANG-HEE;LEE KISAY;KOO YOON-MO;KIM SANG-JIN;JEONG BYEONG-CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.734-739
    • /
    • 2005
  • Myxobacterium sp. HK1, isolated from Korean soil, degrades cellulose, differentiates to fruiting body, and its 16s rDNA has $95\%$ similarity to Polyangium sp. An anticancer molecule, CDMHK, was identified from culture broth of Myxobacterium sp. HK1, and purified by Diaion HP20, Silica gel, Sephadex LH-20 chromatography, and preparative HPLC using an YMC OSD-A C18 column. The molecular structure and formula were determined to be $C_{l2}H_{l9}N_3O_2$ (M.W 237) by MS spectrometry, 300 MHz $^{1}H\;and\;^{13}C$ NMR. The CDMHK was not active against Escherichia coli, Staphylococcus aureus, and Candida albicans. However, this molecule inhibited the growth of various cancer cell lines. The $ED_{50}$ values of CDMHK were determined to be 0.147, 0.086, 0.18, 0.166, and 0.142 $\mu$g/ml against A549, SK-OV-3, SK-MEL-2, VF498, and HCTl5 cancer cell lines, respectively. In addition, the CDMHK was able to induce apoptosis of the CCRF-CEM cancer cell line, evidenced by DNA fragmentation assay and DAPI staining.

Developmental Potential of Bovine Nuclear Transfer Embryos Cultured in Serum-free Medium

  • Lee, S. K;Kim, D. H.;G. S. Im;B. C. Yang;Park, H. S.;W. K. Chang;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.339-347
    • /
    • 2003
  • The purpose of this study was to investigate the development of bovine nuclear transfer (NT) embryos cultured in serum-free conditions. Bovine NT embryos cultured in various culture conditions were compared blastocyst development, total cell number and apoptosis using TUNEL assay. In experiment 1, blastocyst rates of NT embryos were significantly higher (P<0.01) in FBS (22.0%) and BSA (26.6%) groups than in PVA (6.3%) group. Total cell number was significantly higher in FBS (78.4$\pm$19.4) and BSA (90.9$\pm$29.1) groups than in PVA group (46.0$\pm$0.0). Apoptotic cell number was significantly fewer in FBS (3.1$\pm$1.4) and BSA (1.7$\pm$1.4) groups than in PVA group (7.0$\pm$20.0) However, all of results were not different between the FBS and BSA group. In experiment 2, blastocyst rates of NT embryos were significantly higher (P<0.05) in fatty acid free-BSA (FAF-BSA) group (26.8%) than in fraction V-BSA group (11.2%). Total cell number were somewhat higher in FAF-BSA group (89.8$\pm$30.7) than in fraction V-BSA group (88.1$\pm$19.3). Apoptotic cell number were somewhat fewer in FAF-BSA (1.7$\pm$1.5) group than in fraction V-BSA group (4.2$\pm$2.9). These findings suggest that serum free condition were effective for the in vitro development of bovine NT embryos. Therefore, we concluded that fatty acid free-BSA has beneficial effect in development bovine NT embryos and can be use as a serum substitute.

Investigation of Ni/Cu Solar Cell Using Selective Emitter and Plating (선택도핑에 도금법으로 Ni/Cu 전극을 형성한 태양전지에 관한 연구)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Lee, Hae-Seok;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1010-1017
    • /
    • 2011
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. When fabricated Ni/Cu plating metallization cell with a selective emitter structure, it has been shown that efficiencies of up to 18% have been achieved using this technology.

Au Thin Film Fabrication of <111> Crystal Structure by Effusion Cell Process (Effusion Cell 방식에 의한 <111> 결정구조의 Au 박막의 제작)

  • Pyo Kyung Soo;Kim Kand Dae;Kim Yong Gu;Song Chung Kun
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.383-386
    • /
    • 2004
  • The one of important requisites for fabricating molecular electronic device is the single crystal direction of bottom substrate nowadays. [1,2]. We obtain the optimum SAM result when the Au crystal is <111> structure for Self-Assembled molecular. To get the <111> crystal Au, we generally repeat heating and cooling course after evaporating Au [3]. However, we can fabricate <111> crystal Av thin film except post treatment because we simultaneously evaporate and anneal using Effusion Cell. In this paper, we study on thin film growth of <111> crystal Au as bottom electrode which is essential for Self-Assembled molecular by Effusion Cell and analyze crystal structure, thickness, surface conductivity and so on as each process condition.

  • PDF

CdSe-sensitized Photoelectrochemical Solar Cell Prepared by Spray Pyrolysis Deposition Method

  • Im, Sang-Hyuk;Lee, Yong-Hui;Seok, Sang-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • We fabricated CdSe-sensitized photoelectrochemical solar cell by depositing CdSe nanoparticles on nanoporous $TiO_2$ (np-$TiO_2$) via spray pyrolysis deposition method. By adjusting the amount of CdSe-sensitizer deposited on np-$TiO_2$, we can fabricate an efficient CdSe-sensitized solar cell (${\eta}$ = 3.0% under 1 sun irradiation) in polysulfide liquid electrolyte.