• 제목/요약/키워드: Cell cycle genes

검색결과 433건 처리시간 0.035초

Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상 (Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1)

  • 이준노;양병환;최승학;김석현;채영규;정경화;이준석;최강주;김영숙
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구 (A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts)

  • 황유정;이원중;이성복;이석원
    • 구강회복응용과학지
    • /
    • 제38권3호
    • /
    • pp.150-161
    • /
    • 2022
  • 목적:인간 치은섬유아세포의 세포활동에 관련된 다양한 유전자들의 발현에 마이크로그루브-파이브로넥틴 복합 표면이 미치는 영향을 확인하고자 하였다. 연구 재료 및 방법: 평활한 티타늄시편(NE0), 산처리만 시행한 티타늄시편(E0), 마이크로그루브 및 산처리된 티타늄시편(E60/10), 파이브로넥틴을 고정시킨 평활한 티타늄시편(NE0FN), 산처리 및 파이브로넥틴을 고정시킨 티타늄시편(E0FN), 그리고 마이크로그루브 및 산처리 후 파이브로넥틴을 고정시킨 티타늄시편(E60/10FN) 실험군 제작 후 인간 치은섬유아세포의 세포행동 관련 44개 유전자에 대한 실시간 중합효소연쇄반응 실험을 진행하였다. 결과: 인간치은섬유아세포 부착과 증식 등에 관여하는 4종류 신호전달 경로가 활성화되었다. Focal adhesion 경로에 속하는 Integrin α5, Integrin β1, Integrin β3, Talin-2 유전자들, PI3K-AKT 신호 전달 경로에 속하는 AKT1, AKT2, NF-κB 유전자들, MAPK 신호전달 경로에 속하는 MEK2, ERK1, ERK2 유전자들, 세포주기 신호 전달 경로에 속하는 cyclin D1, CDK4, CDK6 유전자들이 마이크로그루브-파이브로넥틴 복합 티타늄표면(E60/10FN)에서 상향조절되었다. 결론: 마이크로그루브-파이브로넥틴 복합 티타늄표면이 세포행동에 관여하는 다양한 유전자들을 상향조절할 수 있다.

Characterization of EST Gene in the Bovine Corpus Luteum during the Estrous Cycle

  • Lee, Eunyoung;Kim, Sang Hwan;Kim, Byung-Gak;Yoon, Jong Taek
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권4호
    • /
    • pp.227-234
    • /
    • 2015
  • The objective of this study was to investigate the expression of bovine luteum expressed sequence tags (ESTs), vascular endothelial growth factor (VEGF), and tumor necrosis factor receptor 1 (TNFR1) and the presence of functional ESTs in the bovine corpus luteum (CL) during different stages of the estrus cycle. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed a difference in the expression of ESTs during the CL stage. Concentration of ESTs in the CL tissue increased significantly from the mid-luteal stage and decreased thereafter. RT-PCR analysis showed higher levels of the EST genes in the CL of the mid-luteal stage than in other stages, and the same level of expression of VEGF. Immunohistochemistry analysis of the tissue from CL formation to regression showed low cytosol and aggregation of the nucleus. And activity caspase 3 (apoptosis detector) was most strongly detected in the CL1 stage of bovine. During the estrous cycle, the cytosol was magnified and differentiation of the nucleus was clearly manifested. The ESTs affected the CL, and the relationship between VEGF and TNFR1 played a pivotal role for CL development and activation, dependent on the stage of CL. These results suggest local production of ESTs, the presence of functional ESTs in the bovine CL, and that ESTs play a role in regulating the function of cell death in bovine CL.

Vanillic Acid Stimulates Anagen Signaling via the PI3K/Akt/β-Catenin Pathway in Dermal Papilla Cells

  • Kang, Jung-Il;Choi, Youn Kyung;Koh, Young-Sang;Hyun, Jin-Won;Kang, Ji-Hoon;Lee, Kwang Sik;Lee, Chun Mong;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.354-360
    • /
    • 2020
  • The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/β-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)-Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/β-catenin proteins, such as phospho(ser9)-glycogen synthase kinase-3β, phospho(ser552)-β-catenin, and phospho(ser675)-β-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of β-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of β-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of β-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/β-catenin pathways in DPCs.

Betaine Effects on Morphology, Proliferation, and p53-induced Apoptosis of HeLa Cervical Carcinoma Cells in Vitro

  • Guo, Yu;Xu, Li-Sha;Zhang, Ding;Liao, Ya-Ping;Wang, Hai-ping;Lan, Zhi-Hui;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3195-3201
    • /
    • 2015
  • Objectives: To investigate the effects of betaine on HeLa cell growth and apoptosis and molecular mechanisms. Materials and Methods: Concentrations of 0.1, 1.0, 5.0, 20.0, 100.0 mg/ml of betaine were used to evaluate the anticancer efficacy for HeLa cells respectively, and MCF-10A was also detected as a normal diploid cell control. Results: We found that proliferation of HeLa cells was inhibited significantly upon exposure to increasing betaine levels with the MTT test (p<0.05). The percentage of S phase cells in the low dose groups (<5mg/ml) were distinctly higher than in high dose groups, and the rates of Sub-G1 phase were the opposite (p<0.01); A high concentration of betaine (>5.0mg/ml) significantly promoted the apoptosis of HeLa cells (p<0.01). SOD activities of the low dose groups were slightly higher than the control group (p<0.05) and there were obvious synchronicity and correlation among the expression of promoting apoptosis genes Bax, P53, Caspase 3 and apoptosis suppression gene Bcl-2. In response to an apoptosis-inducing stimulus, p53 and cyclin D1 could be activated with blockage of the cell cycle at G1/S or S/G2 checkpoints. Conclusions: Our data showed that betaine could promote HeLa cells proliferation in vitro at low concentrations. In contrast, high concentrations could significantly inhibit cell growth and migration, and induce apoptosis of HeLa cells through caspase 3 signaling and further promoted necrosis. This might imply that betaine exhibits tumoricidal effects and acts as a biological response modifier in cancer treatment by inducing apoptosis and cell cycle arrest in a dose and time-dependent manner.

Characterization and Resistance Mechanisms of A 5-fluorouracil-resistant Hepatocellular Carcinoma Cell Line

  • Gu, Wei;Fang, Fan-Fu;Li, Bai;Cheng, Bin-Bin;Ling, Chang-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4807-4814
    • /
    • 2012
  • Purpose: The chemoresistance of human hepatocellular carcinoma (HCC) to cytotoxic drugs, especially intrinsic or acquired multidrug resistance (MDR), still remains a major challenge in the management of HCC. In the present study, possible mechanisms involved in MDR of HCC were identified using a 5-fluorouracil (5-FU)-resistant human HCC cell line. Methods: BEL-7402/5-FU cells were established through continuous culturing parental BEL-7402 cells, imitating the pattern of chemotherapy clinically. Growth curves and chemosensitivity to cytotoxic drugs were determined by MTT assay. Doubling times, colony formation and adherence rates were calculated after cell counting. Morphological alteration, karyotype morphology, and untrastructure were assessed under optical and electron microscopes. The distribution in the cell cycle and drug efflux pump activity were measured by flow cytometry. Furthermore, expression of potential genes involved in MDR of BEL-7402/5-FU cells were detected by immunocytochemistry. Results: Compared to its parental cells, BEL-7402/5-FU cells had a prolonged doubling time, a lower mitotic index, colony efficiency and adhesive ability, and a decreased drug efflux pump activity. The resistant cells tended to grow in clusters and apparent changes of ultrastructures occurred. BEL-7402/5-FU cells presented with an increased proportion in S and G2/M phases with a concomitant decrease in G0/G1 phase. The MDR phenotype of BEL-7402/5-FU might be partly attributed to increased drug efflux pump activity via multidrug resistance protein 1 (MRP1), overexpression of thymidylate synthase (TS), resistance to apoptosis by augmentation of the Bcl-xl/Bax ratio, and intracellular adhesion medicated by E-cadherin (E-cad). P-glycoprotein (P-gp) might play a limited role in the MDR of BEL-7402/5-FU. Conclusion: Increased activity or expression of MRP1, Bcl-xl, TS, and E-cad appear to be involved in the MDR mechanism of BEL-7402/5-FU.

Study on Embryo Transfer System for Production of Transgenic Pigs

  • Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Min, Kyuhong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Hassan, Bahia Mohamed Salih;Yoon, Kiyoung;Shin, Sangtae;Cho, Jongki
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.345-350
    • /
    • 2015
  • In the last 10 years, porcine somatic cell nuclear transfer to generate transgenic pig has been performed tremendous development with introduction and knockout of many genes. However, efficiency of porcine somatic cell nuclear transfer is still low and embryo transfer (ET) is one of important step for production efficiency. In porcine ET for production of transgenic cloned pig, we can consider many of points to increase production rates. In respect of seasonality and weather, porcine ET usually is not performed in summer and winter. Cloned transgenic embryos must be transferred into reproductive tracts of recipients where embryos are located after natural fertilization with similar estrous cycle. If cloned embryos with 2~4 cell stage are transferred, they must be transferred into oviducts in periovulatory stage. Number and deposition sites of transferred cloned embryos are important. And we must compare the methods of ET between surgical and non-surgical ones in respect of production efficiency. Sow recipients after natural estrus is most preferred recipients however its cost is must be considered. Here we will review many of current studies about porcine embryo transfer to increase production efficiency of transgenic pigs and strategies for further studies.

Naesohwangryeon-tang Induced Apoptosis and Autophagy in A549 Human Lung Cancer Cells

  • Kim, Hong Jae;Jeong, Jin-Woo;Park, Cheol;Choi, Yung Hyun;Hong, Su Hyun
    • 대한약침학회지
    • /
    • 제22권4호
    • /
    • pp.269-278
    • /
    • 2019
  • Objectives: Naesohwangryeon-tang (NHT) is a type of traditional herbal formula, however, little is known about its antitumor activity. In this study, the antitumor properties of NHT was evaluated in human lung adenocarcinoma cells. Methods: To check the inhibitory effect of NHT, MTT assay was performed. Cell cycle analysis and detection of ROS production were conducted by flow cytometry. To evaluate the signaling pathway, Western blotting was conducted. Results: Our results showed that the decrease of cell proliferation by NHT stimulation occurred more significantly in A549 cells than in NCI-H460 cells. In addition, NHT-induced apoptosis was associated with the activation of caspases and production of reactive oxygen species (ROS). NHT-induced apoptosis was attenuated after pretreatments with z-VAD-fmk or N-acetylcysteine, suggesting that NHT-induced apoptosis was caspaseand ROS-dependent. Interestingly, NHT treatment led to the development of autophagic vesicular organelles and upregulation of several autophagy-related genes. The pretreatment of bafilomycin A1 decreased apoptosis slightly but increased cell viability in the presence of NHT. Conclusion: These findings indicated that NHT induces both apoptosis and cell-protective autophagy in human lung cancer cells. This data suggests that NHT might be a novel herbal drug for lung cancer.

Modulation of Autophagy is a Potential Strategy for Enhancing the Anti-Tumor Effect of Mebendazole in Glioblastoma Cells

  • Jo, Seong Bin;Sung, So Jung;Choi, Hong Seok;Park, Jae-Sung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.616-624
    • /
    • 2022
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구 (Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis)

  • 김영훈;정우진;정광희;김윤숙;안원근
    • 동의생리병리학회지
    • /
    • 제36권6호
    • /
    • pp.229-234
    • /
    • 2022
  • Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.