• Title/Summary/Keyword: Cell cycle genes

Search Result 429, Processing Time 0.024 seconds

Cyclin D1, Retinoblastoma and p16 Protein Expression in Carcinoma of the Gallbladder

  • Srivastava, Vineeta;Patel, Brijesh;Kumar, Mohan;Shukla, Mridula;Pandey, Manoj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2711-2715
    • /
    • 2013
  • Background: Cancer of the gallbladder is a relatively rare neoplasm with a poor prognosis. The exact mechanisms of its genesis are not known and very little information is available on molecular events leading to labeling this as an orphan cancer. Materials and Methods: In this prospective case control study we evaluated the expression of p16, pRb and cyclin D1 by immunohistochemistry to study the G1-S cell-cycle check point and its possible role in gallbladder carcinogenesis. A total of 25 patients with gallbladder carcinoma (group I), 25 with cholelithiasis (group II) and 10 normal controls. were enrolled Results: Cyclin D1 expression was seen in 10 (40%) patients each with carcinoma and cholelithiasis while only in 2 (20%) of the normal gallbladders but differences were not statistically significant (p value=0.488). p16 was expressed in 12% patients of carcinoma of the gallbladder and 28% of cholelithiasis, however this difference was not statistically significant (p value=0.095). Retinoblastoma protein was found to be expressed in 50% of normal gallbladders and 6 (24%) of carcinoma and 8 (32%) of gallstones. The present study failed to demonstrate any conclusive role of cyclin D1/RB/ p16 pathway in carcinoma of the gallbladder. Conclusions: The positive relation observed between tumor metastasis and cyclinD1 expression and p16 with nodal metastasis suggested that higher cyclin D1/p16 expression may act as a predictive biomarker for aggressive behavior of gallbladder malignancies.

Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

  • Park, Jaejin;Kong, Sunghyung;Kim, Seryun;Kang, Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.136-150
    • /
    • 2014
  • Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (${\Delta}Mofkh1$) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ${\Delta}Mohcm1$ exhibited reduced mycelial growth and conidial germination. Conidia of ${\Delta}Mofkh1$ and ${\Delta}Mohcm1$ were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (${\Delta}Mofox1$) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and MoHCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • Nam, Ki-Yean;Chung, Dong-Hoon;Choi, Je-Won;Lee, Yun-Seong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1 (Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상)

  • Lee, Joon-Noh;Yang, Byung-Hwan;Choi, Seung-Hak;Kim, Seok-Hyun;Chai, Young-Gyu;Jung, Kyoung-Hwa;Lee, Jun-Seok;Choi, Kang-Ju;Kim, Young-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts (인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구)

  • Hwang, Yu Jeong;Lee, Won Joong;Leesungbok, Richard;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • Purpose: To determine the effects of the microgroove-fibronectin complex surface on the expression of various genes related to cellular activity in human gingival fibroblasts. Materials and Methods: Smooth titanium specimens (NE0), acid-treated titanium specimens (E0), microgroove and acid-treated titanium specimens (E60/10), fibronectin-fixed smooth titanium specimens (NE0FN), acid-treated and fibronectin-immobilized titanium specimens (E0FN), and microgroove and acid-treated titanium specimens immobilized with fibronectin (E60/10FN) were prepared. Real-time polymerase chain reaction experiments were conducted on 44 genes related to cell behavior of human gingival fibroblasts. Results: Adhesion and proliferation of human gingival fibroblast on microgroove-fibronectin complex titanium were activated through four types of signaling pathway. Integrin α5, Integrin β1, Integrin β3, Talin-2, which belong to the focal adhesion pathway, AKT1, AKT2, NF-κB, which belong to the PI3K-AKT signaling pathway, MEK2, ERK1, ERK2, which belong to the MAPK signaling pathway, and Cyclin D1, CDK4, CDK6 genes belonging to the cell cycle signaling pathway were upregulated on the microgroove-fibronectin complex titanium surface (E60/10FN). Conclusion: The microgroove-fibronectin complex titanium surface can up-regulate various genes involved in cell behavior.

Characterization of EST Gene in the Bovine Corpus Luteum during the Estrous Cycle

  • Lee, Eunyoung;Kim, Sang Hwan;Kim, Byung-Gak;Yoon, Jong Taek
    • Development and Reproduction
    • /
    • v.19 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • The objective of this study was to investigate the expression of bovine luteum expressed sequence tags (ESTs), vascular endothelial growth factor (VEGF), and tumor necrosis factor receptor 1 (TNFR1) and the presence of functional ESTs in the bovine corpus luteum (CL) during different stages of the estrus cycle. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed a difference in the expression of ESTs during the CL stage. Concentration of ESTs in the CL tissue increased significantly from the mid-luteal stage and decreased thereafter. RT-PCR analysis showed higher levels of the EST genes in the CL of the mid-luteal stage than in other stages, and the same level of expression of VEGF. Immunohistochemistry analysis of the tissue from CL formation to regression showed low cytosol and aggregation of the nucleus. And activity caspase 3 (apoptosis detector) was most strongly detected in the CL1 stage of bovine. During the estrous cycle, the cytosol was magnified and differentiation of the nucleus was clearly manifested. The ESTs affected the CL, and the relationship between VEGF and TNFR1 played a pivotal role for CL development and activation, dependent on the stage of CL. These results suggest local production of ESTs, the presence of functional ESTs in the bovine CL, and that ESTs play a role in regulating the function of cell death in bovine CL.

Vanillic Acid Stimulates Anagen Signaling via the PI3K/Akt/β-Catenin Pathway in Dermal Papilla Cells

  • Kang, Jung-Il;Choi, Youn Kyung;Koh, Young-Sang;Hyun, Jin-Won;Kang, Ji-Hoon;Lee, Kwang Sik;Lee, Chun Mong;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.354-360
    • /
    • 2020
  • The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/β-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)-Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/β-catenin proteins, such as phospho(ser9)-glycogen synthase kinase-3β, phospho(ser552)-β-catenin, and phospho(ser675)-β-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of β-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of β-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of β-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/β-catenin pathways in DPCs.