• Title/Summary/Keyword: Cell current

Search Result 4,035, Processing Time 0.036 seconds

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Studies on the regulation of Hematopoietic enhancement of Brassica campestris var narinosa., Canavalia gladiata DC semen and their combinational prescription via Jak2/STAT5/GATA1 Pathway in Sca-1+ hematopoietic stem cells (Sca-1+골수조혈세포에서 JAK2/STAT5/GATA-1 신호전달 경로를 통한 다채, 도두 그리고 두 조합물에 의한 조혈증진 조절에 관한 연구)

  • Kim, Kunhoae;Kim, Seung-Hyung;Cho, In-Sik;Kim, Han-Young;Kim, Dong-Seon;Lee, Young-Cheol
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.7-16
    • /
    • 2013
  • Objectives : Brassica campestris var narinosa (BCN), Canavalia gladiata DC semen (CGD) and their combinational prescription (BCN+CGD) have been use to demonstrate to regulate hematopoiesis. In the current study, we investigated whether Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription is related to hemato-potentiating function using Sca-$1^+$ hematopoietic stem cells (Sca-$1^+HSCs$) as a testing system. Methods : Sca-$1^+HSCs$ isolated from femur in C57bl/6 mice with leukopenia and thrombocytopenia induced by cyclophosphamide (CTX). Then, Real-time PCR was performed to measure the mRNA expression, ELISA and haematopoiesis-related gene (EPO, TPO, IL-3, SCF, c-kit, GM-CSF), the phosphorylation of JAK2, GATA-1 and STAT-5a/b were observed by western blot, and the numbers of $CD117^+/Sca-1^+$ cell and the number of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E), semisolid clonogenic assay was performed. Result : When Sca-$1^+HSCs$ were treated with Brassica campestris var narinosa, Canavalia gladiata DC semen and their combinational prescription with rIL-3/rSCF, the expression of haematopoiesis-related (EPO, TPO, IL-3, SCF, c-kit, and GM-CSF) were significantly increased at the levels of mRNA as well as production in Sca-$1^+HSCs$. Additionally, CGS enhanced phosphorylation of JAK2, GATA-1, and signal transducer and activator of transcription-5a/b (STAT-5a/b) in Sca-$1^+HSCs$. Furthermore, their combinational prescription (BCN+CGD) significantly enhanced the growth rate of granulocyte erythrocyte monocyte macrophage colony-forming units (CFU-GEMM) and erythroid burst forming units (BFU-E) in vitro. Conclusion : These result suggest that Brassica campestris var narinosa (BCN) and Canavalia gladiata DC have hematopoietic enhancement via hematopoietic cytokine-mediated JAK2/GATA-1/STAT-5a/b pathway, and their combinational prescription (BCN+CGD) has superior hematopoietic enhancement to those of individual extracts.

Pathophysiological Functions of Deubiquitinating Enzymes in Obesity and Related Metabolic Diseases (탈유비퀴틴화 효소 DUBs의 비만 및 대사 관련 질환에서 병태생리학적 기능)

  • Lee, Seul Gi;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.476-481
    • /
    • 2022
  • Ubiquitin signaling regulates virtually all aspects of eukaryotic biology and dynamic processes in which protein substrates are modified by ubiquitin. To regulate these processes, deubiquitinating enzymes (DUBs) cleave ubiquitin or ubiquitin-like proteins from these substrates. DUBs have been implicated in the pathogenesis of cancer, leading to the development of increasing numbers of small-molecule DUB inhibitors. On the other hand, recent studies have focused on the function of DUBs in metabolic diseases such as obesity, diabetes, and fatty liver diseases. DUBs play a positive or negative role in the progression and development of metabolic diseases. Their involvement in cell pathology and regulation of major transcription factors in metabolic syndrome has been examined in vitro and in animal and human biopsies. UCH, USP7, and USP19 were linked to adipocyte differentiation, body weight gain, and insulin resistance in genetic or diet-induced obesity. CYLD, USP4, and USP18 were found to be closely associated with fatty liver diseases. In addition, these liver diseases were accompanied by body weight change in certain cases. Collectively, in this review, we discuss the current understanding of DUBs in metabolic diseases with a particular focus on obesity. We also provide basic knowledge and regulatory mechanisms of DUBs and suggest these enzymes as therapeutic targets for metabolic diseases.

Anti-inflammatory and Anti-allergic Effects of Lentinula edodes Extract by UVIrradiation (UV-B 조사에 따른 버섯 추출물의 항염증 및 항알레르기 활성)

  • Hwang, Mi Sun;Pyo, Jaesung;Kim, Hyun Jin;Do, Sun Gil;Song, Il Dae;Kim, Kang Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.368-374
    • /
    • 2022
  • In this study, the effects of UV irradiation-enhanced ergocalciferol (vitamin D2) content containing Lentinula edodes extract on inflammation and allergic responses were investigated in vitro. The anti-inflammatory and anti-allergic effects of the mushroom extract were tested by estimating the cytokine secretions, such as TNF-α, IL-6, and IL-1β in LPS-activated macrophages (RAW 264.7), or histamine release in PMA and A23187-activated mast cells (RBL-2H3). Under the condition of macrophage activation with LPS, mushroom extract significantly reduced the secretions of pro-inflammatory cytokines, TNF-α and IL-6, and their mRNA expression also matched the observation. The current mushroom extract also significantly reduced the amount of mast cell degranulation-induced histamine secretion from PMA- and A23187-treated mast cells as well as the reduced secretion of IL-4. These results suggest that mushroom extract, which has increased ergocalciferol content by UV irradiation, inhibits the expression of cytokines in inflammation and allergic reactions; therefore, it can be used effectively for the prevention and treatment of inflammatory and allergic diseases.

Dysregulation of Cellular Immune Functions on Gastric Administration to Mixtures of Polyethlene Microplastics and Metallic Lead in Mice (폴리에틸렌 미세플라스틱과 납의 복합노출에 따른 실험동물의 세포면역기능 조절 장애 평가)

  • Gyoungwoo Lee;Changyul Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.1
    • /
    • pp.22-29
    • /
    • 2023
  • Background: The existing research results on the combined toxicity of these pollutants using mammals, such as rodents, are insufficient, especially in relation to changes in the immune system. Objectives: This study aims at evaluating the cellular immune response to PE-MPs solely or when combined with Pb, which possess excellent adsorption capacity with PE-MPs and is commonly co-exposed in our daily lives. Methods: The study investigated the cellular immune function of 9-week ICR mice with 28 days exposure to PE-MPs (2 mg/mouse/day) and Pb (0.1 mM in distilled water) individually and in combination. PE-MPs were administered via gastric intubation while the lead intake was conducted via the oral drinking water route. Cellular immunity was evaluated by analyzing the production for TH1 cytokines namely, TNF-α and IFN-𝛾 and TH2 cytokines, IL-4 and IL-6 in culture supernatants from polyclonally activated splenic mononuclear cells ex vivo. Results: Both the PE-MPs only and the PE-MPs+Pb exposure group revealed an increased TH1 response with elevated TNF-α and IFN-𝛾 levels and downregulated TH2 response with low IL-4, and IL-6 production levels compared to the control group. Furthermore, an increased IFN-𝛾/IL-4 ratio was found in the PE-MPs only and PE-MPs+Pb exposure groups, which indicated the skewedness to TH1 response. Meanwhile, reduced blood hemoglobin levels and increased levels of IL-4, the dominant TH2 cytokine in the Pb-only exposure group, were observed. Conclusions: Our current findings on the predominance of TH1 immune response in the PE-MPs and PE-MPs+Pb groups suggest that PE-MPs could be responsible for the predominant induction of the cellular immune changes. This finding could be used as an important landmark in research related to TH1 predominance, such as autoimmune diseases. It suggests that additional research on immune modulation using longer exposure durations or the same exposure route is required to elucidate stronger findings.

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

An Analysis Study on the Current Status and Integration Methods of the Domestic Early Warning System (국내 재난 예경보 시스템 현황 및 통합 방안에 대한 분석 연구)

  • Hwang, Woosuk;Pyo, Kyungsoo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • Currently, the domestic early warning system is issued differently for each disaster, and is operated independently by relevant organizations from central government to local governments. Representative domestic disaster warning systems include disaster broadcasting using CBS(Cell Broadcasting Service) and DMB(Digital Multimedia Broadcasting) Automatic Emergency Alert Service, DITS(Disaster Information Transform System) transmitted and displayed on TV screens, automatic response system, automated rainfall warning system, and disaster message board. However, due to the difference in the method of issuing each emergency alert at the site of an emergency disaster, the alerts are issued at different times for each media, and the delivered content is also not integrated. If these systems are integrated, it is expected that damage to people's property and lives will be minimized by sharing and integrated management of disaster information such as voice, video, and data to comprehensively judge and make decisions about disaster situations. Therefore, in this study, we present a plan for the integration of the disaster warning system along with the analysis of the operation status of the domestic early warning system.

Effects of Initial Body Weight and Synbiotics Supplementation on Growth Performance of Weaned Pigs (개시체중과 Synbiotics 첨가가 이유자돈의 성장에 미치는 영향)

  • Seok Hee Lee;Su hyup Lee;Jin Ki Park;Jee Hwan Choe
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.53-59
    • /
    • 2024
  • The purpose of the study was to examine the effects of initial body weight and synbiotics supplementation in the diet on growth performance of weaned pigs. A total of 80 crossbred pigs (Landrace×Yorkshire×Duroc, d 28±3, body weight 6.40±1.70 kg) were randomly distributed 4 treatments (4 replication, 5 pigs/replication). The treatments were 1) high initial body weight group (PC), 2) low initional body weight group (NC), 3) low initial body weight with 0.2% antibiotics (amoxicillin) supplementaion group (AB), 4) low initial body weight with 0.2% synbiotics (AllTech® Bio-Mos 0.3%, 0.3%, Bacillus subtillis 0.1%, formic acid 0.1%) supplementation group (Syn). AllTech® Bio-Mos is consist of at least 25% of glucomannanprotein extracted from the cell wall of Saccaromycess cerevisae. Growth performance was measured during 28 d. Average daily gain (ADG) of AB and Syn groups were significantly (p<0.05) higher than that of NC group. However, final body weight at the end of experiment were not different among NC, AB, and Syn groups. Initial body weight and final body weight of PC group were statistically (p<0.001) higher compared to those of other groups. Additionally, PC showed the tendency of lower average daily feed intake and higher ADG, thereby lower feed conversion ratio compared with other groups. Therefore, the current results imply that supplementation of antibiotics and synbiotics in diets for weaned pigs could not catch up with significant differences in initial body weight.

Human Umbilical Cord-Derived Mesenchymal Stem Cells Repair SU5416-Injured Emphysema by Inhibiting Apoptosis via Rescuing VEGF-VEGFR2-AKT Pathway in Rats

  • Qin Chen;Lu Lv;Chujie Zheng;Huiwen Pan;Jili Xu;Jiang Lin;Zhaoqun Deng;Wei Qian
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.395-404
    • /
    • 2022
  • Background and Objectives: Chronic obstructive pulmonary disease (COPD) is a common, frequently-occurring disease and poses a major health concern. Unfortunately, there is current no effective treatment for COPD, particularly emphysema. Recently, experimental treatment of COPD using mesenchymal stem cells (MSCs) mainly focused on bone marrow-derived MSCs (BM-MSCs). Human umbilical cord-derived MSCs (hUC-MSCs) have more advantages compared to BM-MSCs. However, studies on the role of hUC-MSCs in management of COPD are limited. This study sought to explore the role of hUC-MSCs and its action mechanisms in a rat model of VEGF receptor blocker SU5416-injured emphysema. Methods and Results: hUC-MSCs were characterized by immunophenotype and differentiation analysis. Rats were divided into four groups: Control, Control+MSC, SU5416 and SU5416+MSC. Rats in model group were administered with SU5416 for three weeks. At the end of the second week after SU5416 administration, model group were infused with 3×106 hUC-MSCs through tail vein. After 14 days from hUC-MSCs transplantation, rats were euthanized and data were analyzed. HE staining and mean linear intercepts showed that SU5416-treated rats exhibited typical emphysema while emphysematous changes in model rats after hUC-MSCs transplantation disappeared completely and were restored to normal phenotype. Furthermore, hUC-MSCs inhibited apoptosis as shown by TUNEL and Western blotting. ELISA and Western blotting showed hUC-MSCs rescued VEGF-VEGFR2-AKT pathway in emphysematous lungs. Conclusions: The findings show that hUC-MSCs effectively repair the emphysema injury. This study provides the first evidence that hUC-MSCs inhibit apoptosis via rescuing VEGF- VEGFR2-AKT pathway in a rat model of emphysema.

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.