DOI QR코드

DOI QR Code

Effects of Initial Body Weight and Synbiotics Supplementation on Growth Performance of Weaned Pigs

개시체중과 Synbiotics 첨가가 이유자돈의 성장에 미치는 영향

  • Seok Hee Lee (Green Farm Tech) ;
  • Su hyup Lee (Department of Swine Science, Korea National University of Agriculture and Fisheries) ;
  • Jin Ki Park (Department of Swine Science, Korea National University of Agriculture and Fisheries) ;
  • Jee Hwan Choe (Department of Swine Science, Korea National University of Agriculture and Fisheries)
  • 이석희 (그린팜텍) ;
  • 이수협 (국립한국농수산대학교 축산학부) ;
  • 박진기 (국립한국농수산대학교 축산학부) ;
  • 최지환 (국립한국농수산대학교 축산학부)
  • Received : 2023.11.29
  • Accepted : 2023.12.18
  • Published : 2024.01.20

Abstract

The purpose of the study was to examine the effects of initial body weight and synbiotics supplementation in the diet on growth performance of weaned pigs. A total of 80 crossbred pigs (Landrace×Yorkshire×Duroc, d 28±3, body weight 6.40±1.70 kg) were randomly distributed 4 treatments (4 replication, 5 pigs/replication). The treatments were 1) high initial body weight group (PC), 2) low initional body weight group (NC), 3) low initial body weight with 0.2% antibiotics (amoxicillin) supplementaion group (AB), 4) low initial body weight with 0.2% synbiotics (AllTech® Bio-Mos 0.3%, 0.3%, Bacillus subtillis 0.1%, formic acid 0.1%) supplementation group (Syn). AllTech® Bio-Mos is consist of at least 25% of glucomannanprotein extracted from the cell wall of Saccaromycess cerevisae. Growth performance was measured during 28 d. Average daily gain (ADG) of AB and Syn groups were significantly (p<0.05) higher than that of NC group. However, final body weight at the end of experiment were not different among NC, AB, and Syn groups. Initial body weight and final body weight of PC group were statistically (p<0.001) higher compared to those of other groups. Additionally, PC showed the tendency of lower average daily feed intake and higher ADG, thereby lower feed conversion ratio compared with other groups. Therefore, the current results imply that supplementation of antibiotics and synbiotics in diets for weaned pigs could not catch up with significant differences in initial body weight.

본 연구의 목적은 개시체중 차이와 사료 내 신바이오틱스 첨가에 따른 이유자돈의 성장특성을 비교하는 것이다. 공시 돈은 총 80두로 4 처리 4 반복(반복당 5두)로 난괴법 배치를 하였고, 처리구는 1) 개시체중이 높고 아무것도 첨가하지 않은 사료 급여, 2) 개시체중이 낮고 아무것도 첨가하지 않은 사료 급여, 3) 개시체중이 낮고 항생제 0.2% 첨가 급여, 4) 개시체중이 낮고 신바이오틱스 0.2% 첨가 급여 등 4처리구 이다. 실험기간은 총 28일로 Phase I (d 0~14)과 Phase II (d 14~28)로 구분하여 진행하였다. 개시체중이 낮고 사료 내 항생제 및 신바이오틱스 첨가 급여한 AB 그룹과 Syn 그룹은 개시체중이 낮고 아무것도 첨가 급여하지 않은 NC 그룹에 비해 일당증체량이 유의적으로 높았으나 실험종료 시 체중은 유의적 차이가 없었다. 개시체중이 높고 아무것도 첨가 급여하지 않은 PC 그룹은 개시체중 및 종료 체중이 다른 그룹에 비해 유의적으로 높았고, 전체 실험기간 일일사료섭취량은 적고 일당증체량은 유의적으로 높아 사료요구율이 낮은 경향을 나타냈다. 따라서 항생제 또는 신바이오틱스의 사료 내 첨가는 개시체중에서 이미 유의미한 차이가 있는 경우, 이 차이를 극복할 수 있을 정도의 성장 촉진을 이루기는 어려울 것으로 판단된다. 그러나 더 정확한 결론을 도출하기 위해서는 생시체중 및 이유체중의 구간별 비교, 항생제와 신바이오틱스의 종류별, 농도별 비교, 육성 및 비육기간까지의 성장특성 비교 등 추가적인 실험이 요구된다.

Keywords

Acknowledgement

본 연구를 위해 사료첨가제를 제공해 주신 AllTech 관계자분들께 감사합니다.

References

  1. Alexopoulos C, Georgoulakis IE, Tzivara A, Kritas SK, Siochu A, Kyriakis SC. (2004). Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores on the health status and performance of sows and their litters. Journal of Animal Physiology and Animal Nutrition, 88: 381-392. https://doi.org/10.1111/j.1439-0396.2004.00492.x
  2. Aperce CC, Burkey TE, KuKanich B, CrozierDodson BA, Dritz SS, Minton JE. (2010). Interaction of Bacillus species and Salmonella enterica serovar typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. Journal of Animal Science 88: 1649-1656. https://doi.org/10.2527/jas.2009-2263
  3. Blach A. (2020). Application of Probiotics, Prebiotics and Synbiotics in Swine. Retrieved November 27 2023 from https://nutrinews.com/en/application-of-probiotics-prebiotics-and-synbiotics-in-pig-production/
  4. Bosi P, Sarli G, Casini L, de Filippi S, Trevisi P, Mazzoni M, Merialdi G. (2007). The influence of fat protection of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weanling pigs. Animal Feed Science and Technology, 139: 170-185. https://doi.org/10.1016/j.anifeedsci.2006.12.006
  5. Canibe N, Hojberg O, Hojsgaard S, Jensen BB. (2005). Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. Journal of Animal Science, 83:1287-1302. https://doi.org/10.2527/2005.8361287x
  6. CDC. (2022). About Antibiotic Resistance. Retrieved November 28, 2023 from https://www.cdc.gov/drugresistance/about.html
  7. Dixon RA, Howles PA, Lamb C, He X-Z, Reddy JT. 1998. Prospects for the metabolic engineering of bioactive flavonoids and related phenylpropanoid compounds. In JA Manthey, BS Buslig, eds, Flavonoids in the living system. Plenum Press, New York, pp 55-66.
  8. Eisemann JH, Van Heugten E. (2007). Response of pigs to dietary inclusion of formic acid and ammonium formate. Journal of Animal Science, 85: 1530-1539. https://doi.org/10.2527/jas.2006-464
  9. Htoo JK, Molares J. (2012). Effects of dietary supplementation with two potassium formate sources on performance of 8- to 22-kg pigs. Journal of Animal Science, 90: 346-349. https://doi.org/10.2527/jas.53776
  10. KIM HB, ISAACSON RE. (2015). The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterinary Microbiology, 177: 242-251.
  11. Liu N, Shen H, Zhang F, Liu X, Xiao Q, Jiang Q, Tan B, Ma X. (2023). Applications and prospects of functional oligosaccharides in pig nutrition: A review. Animal Nutrition, 13: 206-215. https://doi.org/10.1016/j.aninu.2023.02.002
  12. Luise D, Correa F, Bosi P, Trevisi P. (2020). A Review of the Effect of Formic Acid and Its Salts on the Gastrointestinal Microbiota and Performance of Pigs. Animals, 10(5): 887.
  13. Meng QW, Yan L, Ao X, Zhou TX, Wang JP, Lee JH, Kim IH. (2010). Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. Journal of Animal Science, 88: 3320-3326.
  14. Montoro JC, Manzanilla EG, Sola-Oriol D, Muns R, Gasa J, Clear O, Diaz JAC. (2020). Predicting Productive Performance in Grow-Finisher Pigs Using Birth and Weaning Body Weight. Animals, 10(6): 1017.
  15. NRC. (2012). Nutrient Requirements of Swine. 11th revision. Washington, DC, National Academies Press.
  16. Overland M, Granli T, Kjos NP, Fjetland O, Steien SH, Stokstad M. (2000). Effect of dietary formates on growth performance, carcass traits, sensory quality, intestinal microflora, and stomach alterations in growing-finishing pigs. Journal of Animal Science, 78: 1875-1884.
  17. Overland M, Kjos NP, Borg M, Skjerve E, Sorum H. (2008). Organic acids in diets for entire male pigs: Effect on skatole level, microbiota in digesta, and growth performance. Livestock Science, 115: 169-178. https://doi.org/10.1016/j.livsci.2007.07.007
  18. Pluske JR, Turpin DL, Kim J. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2): 187-196.
  19. Wang Y, Cho JH, Chen YJ, Yoo JS, Huang Y, Kim HJ, Kim IH. (2009). The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livestock Science 120(1-2): 35-42. https://doi.org/10.1016/j.livsci.2008.04.018
  20. Zhou Y, Wei X, Zi Z, Zou B, Xia S, Lu N, Lei H, Lu Y, Parvizi N, Xia D. (2015). Potassium diformate influences gene expression of GH/ IGF-I axis and glucose homeostasis in weaning piglets. Livestock Science, 172: 85-90. https://doi.org/10.1016/j.livsci.2014.12.003
  21. Zhu Q, Azad MAK, Dong H, Li C, Li R, Cheng Y, Liu Y, Yin Y, Kong X. (2023). Sow-Offspring Diets Supplemented with Probiotics and Synbiotics Are Associated with Offspring's Growth Performance and Meat Quality. International Journal of Molecular Science, 24: 7668.