• Title/Summary/Keyword: Cell Temperatures

Search Result 689, Processing Time 0.036 seconds

Isolation and in vitro culture of primary cell populations derived from ovarian tissues of the rockfish, Sebastes schlegeli

  • Ryu, Jun Hyung;Kim, Hak Jun;Bae, Seung Seob;Jung, Choon Goo;Gong, Seung Pyo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.9.1-9.7
    • /
    • 2016
  • This study was conducted to identify the general conditions for the isolation and in vitro culture of ovary-derived cells in rockfish (Sebastes schlegeli). The effects of three different enzymes on cell retrieval from ovarian tissues were evaluated first, and then the ovary-dissociated cells were cultured under various culture conditions, with varying basal media and culture temperatures, addition of growth factors, and/or culture types. We found that collagenase type I treatment was effective for cell isolation from ovarian tissues. From a total of 42 trials to evaluate the effects of basal media and culture temperatures on cell culture of ovary-dissociated cells, we observed that Leibovitz's L15 medium was more supportive than Dulbecco's modified Eagle's medium for culture, and the cells could grow at all three temperatures tested, 15, 20, and $25^{\circ}C$, at least up to passage 2. However, growth factor addition did not improve cell growth. Introduction of suspension culture after monolayer culture expanded the culture period significantly more than did monolayer culture alone. Our results may provide a basis for developing an in vitro system for S. schlegeli germline cell culture, which will ultimately lead to improvement of the species.

Crystal structure of the pretense domain of an ATP-independent heat shock protease HtrA

  • Kim, Dong-Young;Kim, Dong-Ryoung;Ha, Sung-Chul;Neratur K.Lokanath;Hwang, Hye-Yeon;Kim, Kyeong-Kyu
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.24-24
    • /
    • 2002
  • HtrA (high temperature requirement A), a periplasmic heat shock protein, is known to have molecular chaperone function at low temperatures and proteolytic activity at elevated temperatures. To investigate the mechanism of functional switch to pretense, we have determined the crystal structure of the N-terminal protease domain (PD) of HtrA from Thermotoga maritima. HtrA PD shares the same fold with chymotrypsin-like serine professes. However, crystal structure suggests that HtrA PD is not an active pretense at current state since its active site is not formed properly and blocked by an additional helical lid. On the surface of the lid, HtrA PD has hydrophobic patches that could be potential substrate binding sites for molecular chaperone activity. Present structure suggests that the activation of the proteolytic function of HtrA PD at elevated temperatures might occur by the conformational change.

  • PDF

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Discharging/Charging Voltage-Temperature Pattern Recognition for Improved SOC/Capacity Estimation and SOH Prediction at Various Temperatures

  • Kim, Jong-Hoon;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.

Solution-Derived Amorphous Yttrium Gallium Oxide Thin Films for Liquid Crystal Alignment Layers

  • Oh, Byeong-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.109-112
    • /
    • 2016
  • We demonstrated an alternative electrically controlled birefringence liquid crystal (ECB-LC) system with ion beam (IB)-irradiated yttrium gallium oxide (YGaO) alignment films using a sol-gel process. The surface roughness of the films was dependent on the annealing temperature; aggregated particles on surface were observed at lower annealing temperatures, whereas a smooth surface could be obtained with higher annealing temperatures. Higher transmittance in the visible region was observed at higher annealing temperatures. The film had an amorphous crystallographic state irrespective of the annealing temperature. Furthermore, ECB-LC cell with our IB-irradiated YGaO film yielded faster response time when compared to ECB-LC cell with rubbed polyimide. Considering the fast response time and high transmittance, the IB-irradiated YGaO-base LC system is a powerful alternative application for the liquid crystal display industry.

Drying Characteristics of Apple Slabs after Pretreatment with Supercritical CO2

  • Lee, Bo-Su;Choi, Yong-Hee;Lee, Won-Young
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 2011
  • Supercritical $CO_2$ pretreatment before dehydration leads to a faster dehydration rate. The best supercritical $CO_2$ pretreatment conditions for the most effective dehydration were $45^{\circ}C$, 25 MPa and $55^{\circ}C$, 25 MPa. Increasing pressure of the supercritical $CO_2$ pretreatment system tended to accelerate the dehydration rate more than increasing temperature did. Samples pretreated at higher temperatures and pressures showed greater shrinking and pore distribution on scanning electron microscopy. Control samples maintained their cell walls, whereas samples pretreated at higher temperatures and pressures showed more cell disruption, and more pores were observed. Pore sizes of control and pretreated samples were about 100 and $70{\sim}80\;{\mu}m$, respectively. Samples pretreated at higher temperatures and pressures had smaller pores and a denser distribution.

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells

  • Aman, Nurul Ashikin Mohd Nazrul;Muchtar, Andanastuti;Rosli, Masli Irwan;Baharuddin, Nurul Akidah;Somalu, Mahendra Rao;Kalib, Noor Shieela
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2020
  • Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Factors Affecting the Superconducting Transition Temperatures of β-Pyrochlore Oxides AOs2O6 (A=K, Rb and Cs)

  • Jung, Dong-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.451-454
    • /
    • 2011
  • The traditional BCS superconductors $AOs_2O_6$ (A=K, Rb, and Cs) were investigated to find the relationship between their structures and superconducting transition temperatures. The $T_c$ decreases with increasing the unit cell parameter of $AOs_2O_6$. This is in contrast to the case of conventional BCS superconductivity in a single bond model, where $T_c$ may increase with increasing the the unit cell parameter since the DOS at Fermi level increases as the unit cell parameter increases. Instead, the $T_c$ of a $\beta$-pyrochlore oxide is proportional to the lattice softness of the compound.

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.