DOI QR코드

DOI QR Code

Factors Affecting the Superconducting Transition Temperatures of β-Pyrochlore Oxides AOs2O6 (A=K, Rb and Cs)

  • Jung, Dong-Woon (Department of Chemistry and Institute of Basic Natural Sciences, Wonkwang University)
  • Received : 2010.10.09
  • Accepted : 2010.11.25
  • Published : 2011.02.20

Abstract

The traditional BCS superconductors $AOs_2O_6$ (A=K, Rb, and Cs) were investigated to find the relationship between their structures and superconducting transition temperatures. The $T_c$ decreases with increasing the unit cell parameter of $AOs_2O_6$. This is in contrast to the case of conventional BCS superconductivity in a single bond model, where $T_c$ may increase with increasing the the unit cell parameter since the DOS at Fermi level increases as the unit cell parameter increases. Instead, the $T_c$ of a $\beta$-pyrochlore oxide is proportional to the lattice softness of the compound.

Keywords

References

  1. Subramanian, M. A.; Aravamudan, G.; Subba Rao, G. V. Prog. Solid State Chem. 1983, 15, 55. https://doi.org/10.1016/0079-6786(83)90001-8
  2. Donohue, P. C.; Longo, J. M.; Rosenstein, R. D.; Katz, L. Inorg. Chem. 1965, 4, 1152. https://doi.org/10.1021/ic50030a013
  3. Hanawa, M.; Muraoka, Y.; Tayama, T.; Sakakibara, T.; Ymaura, J.; Hiroi, Z. Phys. Rev. Lett. 2001, 87, 187001. https://doi.org/10.1103/PhysRevLett.87.187001
  4. Sakai, H.; Yoshimura, H.; Ohno, H.; Kato, H.; Kambe, S.; Walstedt, R. E.; Matsuda, T. D.; Haga, Y.; Onuki, Y. J. Phys.: Condens. Matter 2001, 13, L785 https://doi.org/10.1088/0953-8984/13/33/105
  5. Jin, R.; He, J.; McCall, S.; Alexander, C. S.; Drymiotis, F.; Mandrus, D. Phys. Rev. 2001, B64, 180503.
  6. Ramirez, A. P. Annu. Rev. Mater. Sci. 1994, 24, 453. https://doi.org/10.1146/annurev.ms.24.080194.002321
  7. Subramanian, M. A.; Aravamudan, G.; Rao, G. V. S. Prog. Solid State Chem. 1983, 15, 55. https://doi.org/10.1016/0079-6786(83)90001-8
  8. Yonezawa, S.; Muraoka, Y.; Hiroi, Z. J. Phys. Condens. Matter 2004, 16, L9 https://doi.org/10.1088/0953-8984/16/3/L01
  9. Yamamura, J. I.; Yonezawa, S.; Maraoka, Y.; Hiroi, Z. J. Solid State Chem. 2006, 179, 336. https://doi.org/10.1016/j.jssc.2005.10.039
  10. Yonezawa, S.; Muraoka, Y.; Hiroi, Z. J. Phys. Soc. Jpn. 2004, 73, 819. https://doi.org/10.1143/JPSJ.73.819
  11. Yonezawa, S.; Muraoka, Y.; Hiroi, Z. J. Phys. Soc. Jpn. 2004, 73, 1655. https://doi.org/10.1143/JPSJ.73.1655
  12. Bruhwiler, M.; Kazakov, S. M.; Zhigadlo, N. D.; Karpinski, J.; Batlogg, B. Phys. Rev. 2004, B70, 020503.
  13. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  14. Ammeter, J. H.; Burgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. https://doi.org/10.1021/ja00480a005
  15. Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Phys. Rev. 1957, 108, 1175. https://doi.org/10.1103/PhysRev.108.1175
  16. Solymer, L.; Walsh, D. Lectures on the Electrical Properties of Materials, 4th ed.; Oxford University Press: Oxford, England, 1988; Ch. 14.
  17. Mitrovic. B.; Leavens. C. B.; Carbotte. J. P. Phys. Rev. 1980, B21, 5048.
  18. Howley, M. E.; Gray, K. W.; Ferris, B. D.; Wang, H. H.; Caelson, K. D.; Williams, J. Phys. Rev. Lett. 1986, 57, 629. https://doi.org/10.1103/PhysRevLett.57.629

Cited by

  1. Synthesis and characterization of Y2Ti2O7 nanoparticles from Y–Ti hydride nanocomposite at a low sintering temperature vol.51, pp.14, 2016, https://doi.org/10.1007/s10853-016-9985-5