• Title/Summary/Keyword: Cell Simulation

Search Result 2,478, Processing Time 0.054 seconds

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

A Simulation of the Myocardium Activation Process using the Discrete Event Cell Space Model (DEVCS 모델을 사용한 심근 활성화과정의 시뮬레이션)

  • Kim Gwang-Nyeon;Jung Dong-Keun;Kim Gi-Ryon;Choi Byeong-Cheol;Lee Jung-Tae;Jeon Gye-Rok
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.1-16
    • /
    • 2004
  • The modelling and simulation of the activation process for the heart system is meaningful to understand special excitatory and conductive system in the heart and to study cardiac functions because the heart activation conducts through this system. This thesis proposes two dimensional cellular automaton(CA) model for the activation process of the myocardium and conducted simulation by means of discrete time and discrete event algorithm. In the model, cells are classified into anatomically similar characteristic parts of the heart and each of cells has a set of cells with preassigned properties. Each cell in this model has state variables to represent the state of the cell and has some state transition rules to change values of state variables executed by state transition function. The state transition rule is simple as follows. First, the myocardium cell at rest stay in passive state. Second, if any one of neighborhood cell in the myocardium cell is active state then the state is change from passive to active state. Third, if cell's state is an active then automatically go to the refractory state after activation phase. Four, if cell's state is refractory then automatically go to the passive state after refractory phase. These state transition is processed repeatedly in all cells through the termination of simulation.

  • PDF

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

A study on the modelling and simulation of robotic assembly cells (로보틱 조립셀의 모델링 및 시뮬레이션에 관한 연구)

  • 홍지민;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.411-416
    • /
    • 1990
  • A modelling process of a robotic assembly cell and a method for analysis of the assembly cell operation through simulation are presented. An assembly cell including industrial robots is the subject of the model. The states of the assembly cell elements are taken as the state variables and the relationships between the states are described mathematically using the operators. An algorithm for the cell operation is developed from the relationships between the states and the information on the assembly task, and efficient analyses are performed by the simulation results.

  • PDF

Development of a Parametric Simulation Model by a Model Integration Method for Production System with Robots (모델 접속 기법에 의한 로봇 응용 생산시스템의 파라메트릭 시뮬레이션모델 개발)

  • Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.136-148
    • /
    • 1995
  • In this study, a model integration method is pressented as a new method for development of a parametric simulation model. This method enable us to integrate the special simulation models for each production subsystem into a large simulation model. Not only this large simulation model but also each special simulation model for each production subsytem can be used independently. Using this integration method man can reduce the development time and cost for simulation model development. To show the usefulness of this method, a simulation model for a production system with robots is developed by this model integration method. This simulation model is realized by the integration of two special simulation models, one model for a machining subsystem and the other model for a transport subsystem. The modeled production system consists of the robotic cells for machining and a transport subsystem which enable the material flow among the robotic cells. The flow of workpiece in each robotic cell is not fixed. All machines in a robotic cell are only served by robots.

  • PDF

Cell-based Discrete Event and Discrete Time Simulation for the Prediction of Oil Slick Movement and Spreading in Ocean Environment (해상에서의 원유 확산 과정 예측을 위한 격자 기반 이산 사건 및 이산 시간 시뮬레이션)

  • Ha, Sol;Cha, Ju-Hwan;Ku, Nam-Kug;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • In this paper, oil spreading simulation model is proposed for analyzing the oil spreading phenomenon rapidly when the ocean is polluted by the oil from a stranded ship. The space occupied by the ocean is converted into the latticed cell, and the each cell contains the information, such as the quantity of the oil, the temperature of the ocean, and the direction of current and wind. Two states, such as "clean" and "polluted" are defined in the each cell, and the oil in the cell spreads to the neighbor cells by the spreading rules. There are three spreading rules. First, the oil in the certain cell only spreads to the neighbor cells that contain larger oil than the certain cell. Second, the oil evaporates in proportion to the temperature of the ocean at the every time step. Third, the oil spreading property is affected by the direction and the speed of the current and the wind. The oil spreading simulation model of the each cell is defined by using the combined discrete event and discrete time simulation model architecture with the information and the spreading rules in the cell. The oil spreading simulation is performed when the oil of 10,000 kL is polluted in the ocean environment of 300 m by 300 m with various current and wind.

New GGNMOS I/O Cell Array for Improved Electrical Overstress Robustness

  • Pang, Yon-Sup;Kim, Youngju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • A 0.18-${\mu}m$ 3.3 V grounded-gate NMOS (GGNMOS) I/O cell array for timing controller (TCON) application is proposed for improving electrical overstress (EOS) robustness. The improved cell array consists of 20 GGNMOS, 4 inserted well taps, 2 end-well taps and shallow trench isolation (STI). Technology computer-aided design (TCAD) simulation results show that the inserted well taps and extended drain contact gate spacing (DCGS) is effective in preventing EOS failure, e.g. local burnout. Thermodynamic models for device simulation enable us to obtain lattice temperature distributions inside the cells. The peak value of the maximum lattice temperature in the improved GGNMOS cell array is lower than that in a conventional GGNMOS cell array. The inserted well taps also improve the uniformity of turn-on of GGNMOS cells. EOS test results show the validity of the simulation results on improvement of EOS robustness of the new GGNMOS I/O cell array.