• Title/Summary/Keyword: Cell Performance

Search Result 4,999, Processing Time 0.04 seconds

Effects of electrode fabrication conditions on performance characteristics of phosphoric acid fuel cell (인산형 연료전지 성능 특성에 미치는 전극 제조 조건의 영향)

  • 송락현;김창수;신동렬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.224-229
    • /
    • 1996
  • Performance characteristics of single cell in phosphoric acid fuel cell were studied for various electrode fabrication parameters such as teflon content, electrode structure, thickness of electrocatalyst layer, platinum content and electrode area. The performance of single cell was decided from the measured voltage-current through a load change. The electrode of 40wt.% teflon exhibited high initial performance of single cell, but in the long term operation, the cell performance of 45 wt.% teflon was better. Also the single cell appeared good performance in case of electrodes with duplicate structure, thin electrocatalyst in thickness, more platinum content, and small area. These results of cell performance were discussed as related to the electrolyte flooding, formation of 3 phase boundary area, internal resistance of electrode, and microstructure of electrode.

  • PDF

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Analysis of Cell Performance with Varied Electrolyte Species and Amounts in a Molten Carbonate Fuel Cell

  • Lee, Ki-Jeong;Kim, Yu-Jeong;Koomson, Samuel;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study evaluated the performance characteristics of varied electrolyte species and amounts in a molten carbonate fuel cell (MCFC). Coin-type MCFCs were used at the condition of $650^{\circ}C$ and 1 atm. In order to measure the effects of varied electrolyte species and amounts, electrolytes of $(Li+K)_2CO_3$ and $(Li+Na)_2CO_3$ were selected and the amounts of 1.5 g, 2.0 g, 3.0 g, and 4.0 g were used. Insignificant performance differences were observed in the cell using different electrolytes, but the cell performance was sensitive to the amount of the electrolyte used. The pore-filling ratio (PFR), a ratio of pore filling in the components by the liquid carbonate electrolytes, was used to determine the optimum performance range. Consequently, 77% PFR demonstrated the optimum performance for both electrolytes. Thus, the MCFC had a permissible but narrow optimum performance range. The remaining amounts of electrolyte in the cells were determined using the weight reduction ratio (WRR) method after several hours of cell operation. The WRR used the relationship between the initial loaded amount of electrolyte and weight reduction of components in 10 wt% acetic acid. The relationships were linear and identical between the two electrolyte species.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Effects of reactant gases on phosphoric acid fuel cell performance (인산형 연료전지의 발전성능에 미치는 반응기체 영향)

  • 송락현;김창수;신동렬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.374-379
    • /
    • 1996
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/cm$_{2}$ are found to be 5cc/min cm$_{2}$ 5cc/min cm$_{2}$ and 15cc/min cm$_{2}$ at room temperature and 1 atm, respectively. Also the open circuit voltage of single cell decreased with increasing oxygen flow rate due probably to the decreased probably to the decreased oxygen pressure in the cathode side. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from point of view of electrochemical reaction of the cell. (author). 9 refs., 8 figs.

  • PDF

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측)

  • Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.