• 제목/요약/키워드: Cell Membrane

검색결과 4,134건 처리시간 0.029초

일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가 (The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell)

  • 정호영;김민우;임지훈;최진혁;노성희
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.

식이지방이 생체막 구조와 기능에 미치는 영향 (Effect of Dietary Fat on Structure and Function of Mammalian Cell Membrane)

  • 조성희
    • 한국식품영양과학회지
    • /
    • 제13권4호
    • /
    • pp.459-468
    • /
    • 1984
  • The currently accepted model of membrane structure proposes a dynamic, asymmetric lipid matrix of phospholipids and cholesterol with globular proteins embedded across the membrane to various degrees. Most phospholipids are in the bilayer arrangement and also closely associated with integral membrane proteins or loosely associated with peripheral proteins. Biological functions of membrane, such as membrane-bound enzyme functions and transport systems, are influenced by the membrane physical properties, which are determined by fatty acid composition of phospholipids, polar head group composition and membrane cholesterol content. Polar and non-polar region of the phospholipid molecule can interact, with changes in the conformation of a membrane-associated protein altering either its catalytic activity or the protein's interaction with other membrane proteins. Mammalian dietary studies attempted to change the lipid composition of a few cell membranes have shown comparisons, using essential fatty acid-deficient diets. In recent years, Clandinin and a few other workers have pioneered the study proving the influence of dietary fat fed in a nutritionally complete diet on composition of phospholipid classes of cell membrane. Modulation caused by diet fat was rapid and reversible in phospholipid fatty acyl composition of membranes of cardiac mitochondria, liver cell, brain synaptosome and lymphocytes. These changes were at the same time, accompanied by variety of membrane associated functions controlled by membrane-bound enzymes, tranporter and receptor proteins. The findings suggest the basic concept of the necessity of dietary fatty acid balance if consistency of optimal membrane structural lipid composition is to be maintained, as well as the overall inadequacy of describing the nutritional-biochemical quality of a dietary fat solely by its content of linoleic acid. Furthermore, they give light on the possible application to clinical and preventive medicine.

  • PDF

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

연료전지 전해질 복합막 제조를 위한 폴리설폰계 지지체의 제조와 물성 (Preparation and Characterization of Polysulfone Substrate for Reinforced Composite Membrane Fuel Cell Membrane)

  • 남상용;김득주;황해영;김형준
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.63-71
    • /
    • 2009
  • 본 연구에서는 연료전지용 전해질 복합체용 지지체 막을 저가의 우수한 기계적 열적 안정성을 가지는 Polysulfone으로 상전이 법을 이용하여 제조하였다. 제조된 막을 이용하여 농도변화와 노출시간의 변화에 따른 열 수축율, 통기도, 모폴로지, 기계적 물성 및 다공도를 측정하였다. 모폴로지를 조절하기 위해 공기 중 노출 시간과 고분자 농도가 제어되었으며, 제조된 막은 고분자 농도 변화에 관계없이 모두 스폰지 구조를 나타내었다. 고분자의 농도가 증가함에 따라 기계적 열적 안정성은 증가하였지만, 다공도는 감소하는 결과를 보였다. 실험결과 20 wt%의 PSf 고분자 용액을 사용하여 2분의 노출시간을 두고 제조된 고분자 막에서 연료전지용 복합막으로 사용되기 위한 충분한 다공도(80%)와 기계적(tensile : 1.3 MPa), 열적(MD, TD shrinkgage < 1%) 안정성을 나타내었다.

화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가 (Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application)

  • 성승화;이보련;최욱;김태현
    • 멤브레인
    • /
    • 제29권3호
    • /
    • pp.173-182
    • /
    • 2019
  • 화석연료 사용이 증가하면서 온실가스 및 대기오염가스 등의 환경오염 문제가 심각해졌다. 이를 해결하기 위한 신재생에너지, 친환경적인 대체에너지원을 찾기 위한 많은 연구가 이뤄지고 있다. 연료전지는 전기에너지를 발생하며 부산물로 물만이 생성되는 친환경 에너지 발생장치다. 특히, 전해질로 음이온 교환막을 사용하는 음이온 교환막 연료전지(Anion Exchange Membrane Fuel Cell)는 높은 촉매의 활성으로 양이온 교환막 연료전지(Proton Exchange Membrane Fuel cell)와 다르게 저가의 금속 촉매를 사용할 수 있는 장점 때문에 관심이 높아지고 있다. 음이온 교환막으로써 요구되는 주요 특성은 높은 이온($OH^-$) 전도도 및 높은 pH의 구동조건에서의 안정성이다. 본 연구에서는 PPO계 고분자의 화학적 가교 반응을 이용해 얻어진 가교형 고분자 막의 낮은 기계적인 특성과 치수 안정성을 높이기 위해 보다 높은 분자량을 갖는 고분자 사용과 함께 가교율 증대를 통해 보다 높은 이온 전도도와 기계적인 성질, 높은 화학적인 안정성뿐만 아니라 실제 연료전지 구동조건에서 높은 셀 성능을 갖는 AEMFC용 고분자 전해질 막을 개발했다.

고온형 고분자전해질연료전지용 MEA 개발 및 응용 (Development and Application of High Temperature Proton Exchange Membrane Fuel Cells)

  • 임태훈;김형준
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.439-445
    • /
    • 2007
  • Proton exchange membrane Fuel Cells(PEMFCs) have been spotlighted because of their broad potential application for potable electrical devices, automobiles and residential usages. However, their utilization is limited to low temperature operation due to the electrolyte dehydration at high temperature. High temperature PEMFC operation offers high CO tolerance and easy water management. This review presents development of high temperature($120{\sim}200^{\circ}C$) PEMFC. Especially, PEMFC which is based on acid-doped PBI membrane is discussed.

Effect of surface-treatments on flexibility and guided bone regeneration of titanium barrier membrane

  • Kim, Jin-Tae;Kim, Byoung Soo;Jeong, Hee Seok;Heo, Young Ku;Shin, Sang-Wan;Lee, Jeong-Yol;Shim, Young Ho;Lee, Deuk Yong
    • 한국결정성장학회지
    • /
    • 제25권3호
    • /
    • pp.98-104
    • /
    • 2015
  • Titanium barrier membranes are prepared to investigate the effect of surface-treatments, such as machining, electropolishing, anodizing, and electropolishing + TiN coating, on the biocompatibility and physical properties of the membranes. The surface roughness (Ra) of the membrane decreases from machining ($0.37{\pm}0.09{\mu}m$), TiN coating ($0.22{\pm}0.09{\mu}m$), electropolishing ($0.20{\pm}0.03{\mu}m$), to anodizing ($0.15{\pm}0.03{\mu}m$). The highest ductility (24.50 %) is observed for the electropolished Ti membrane. No evidence of causing cell lysis or toxicity is found for the membranes regardless of the surface-treatments. Cell adhesion results of L-929 and MG-63 show that the machined Ti membrane exhibits the highest cell adhesion while the electropolished membrane is the best membrane for the L-929 cell proliferation after 7 days. However, no appreciable difference in MG-63 cell proliferation among variously surface-treated membranes is detected, suggesting that the electropolished Ti membrane is likely to be the best membrane due to the synergic combination of tailored flexibility and excellent fibroblast proliferation.

Perfonnance Evaluation of Single Cell and Stack of PolymerElectrolyte Fuel Cell by Using Transfer Printing Technique

  • KIM, CHANG SOO;CHUN, YOUNG-GAB;PECK, DONG-HYUN;YANG, TAE-HYUN
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.19-27
    • /
    • 2000
  • The polymer electrolyte membrane fuel cell (PEMFC) system was developed. In order to enhance the performance of membrane electrode assembly (MEA), the transfer printing method of the electrocatalyst layer on membrane was developed. The $H_2/O_2$ single cell with an electrode area of $50cm^2$ was fabricated and tested using 20 wt.% Pt/C as an electrocatalyst and the commercial and hand-made MEA such as Nafion 115, Hanwha, Dow, Flemion T and Gore Select. The 100-cell PEMFC stack with an active electrode area of $300cm^2$ was designed and fabricated using 40 wt.% Pt/C and 30 wt.% Pt-Ru/C as a cathode and anode electrocatalysts, respectively. The performance of PEMFC system was obtained to be 7kW (250A at 28V) and 3.5kW (70A at 50V) at $80^{\circ}C$ by flowing $H_2/air$ and methanol reformed fuel gas/air, respectively.

  • PDF