• Title/Summary/Keyword: Cell Death

Search Result 3,456, Processing Time 0.028 seconds

Apoptotic Effect of ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on MIA PaCa-2 Cells (인진과 황련 추출물의 췌장암 세포주 MIA PaCa-2에 대한 세포사멸 효과)

  • Joo, Hyun-A;Bae, Hyeon-Jin;Hwang, Chung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.27 no.4
    • /
    • pp.158-176
    • /
    • 2014
  • Purpose : The purpose of this study is to investigate the effect of ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on cell death in pancreatic cancer cells. Method : Human-derived pancreatic cancer cell line, MIA PaCa-2 cells were treated by Prescription A with various concentrations and the cytotoxicity was determined by MTT assay. To investigate the effects of Prescription A on pancreatic cancer cells, the staining of Annexin V/PI, cell cycle arrest, nuclear chromatin condensation and the production of reactive oxygen species (ROS) were examined. The effect of Prescription A's effective components, ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on cell death were also observed. Results : The viability of MIA PaCa-2 cells treated with Prescription A were decreased in a dose dependent manner. Prescription A induced cell death in MIA PaCa-2 cells as shown by result of Annexin V/PI double staining, chromatin condensation and cell cycle arrest. In addition, production of ROS was increased by Prescription A treatment, suggesting that ROS induced by Prescription A mediated cell death. Furthermore, Prescription A's effective components, ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts were also induced apoptosis of MIA PaCa-2 cells through ROS production. Conclusion : These results suggest that Prescription A's effective components, ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts induced death of MIA PaCa-2 through ROS production.

TRPV1 activation induces cell death of TM3 mouse Leydig cells

  • Kim, Eun-Jin;Dang, Long Cao;Nyiramana, Marie Merci;Siregar, Adrian S.;Woo, Min-Seok;Kim, Chang-Woon;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.145-153
    • /
    • 2021
  • The role of transient receptor potential vanilloid receptor-1 (TRPV1) has been primarily investigated in pain sensory neurons. Relatively, little research has been performed in testicular cells. TRPV1 is abundantly expressed in Leydig cells of young adult mice. This study was conducted to determine the role of the TRPV1 channel in Leydig cells. TRPV1 modulators and testosterone were treated to the mouse Leydig cell line TM3 cells for 24 h. Capsaicin, a TRPV1 activator, dose-dependently induced cell death, whereas capsazepine, a TRPV1 inhibitor, inhibited capsaicin-induced cell death. Testosterone treatment reduced capsaicin-induced cell death. High concentrations of testosterone decreased TRPV1 mRNA and protein expression levels. However, TRPV1 modulators did not affect testosterone production. These results showed that capsaicin induced cell death of Leydig cells and that testosterone reduced capsaicin-induced cell death. Our findings suggest that testosterone may regulate the survival of Leydig cells in young adult mice by decreasing the expression level of TRPV1.

The Effect of Blueberry Extract on Gene Expressions Related to Apoptosis in Human Breast Cancer MCF7 Cells (블루베리가 인체 유방암세포 MCF7에서 세포 사멸 관련 유전자 발현에 미치는 영향)

  • Lee, Se-Na;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • This study was conducted to investigate the effects of blueberry extract on cell death, ROS and gene expression patterns associated with the anti-cancer activity in human breast cancer MCF7 cells. To accomplish this, 20 mg/mL concentration of blueberry extract was added to the cell culture for 0, 6, 12, 24 or 48 h, after which the effects were evaluated by various analyses. MTT assay showed that the cellular activities decreased rapidly during the first 12 h of treatment. During this period, dual staining with Hoechst33322 and propidium iodide also produced a similar trend in which the dead or dying cells increased sharply. Furthermore, evaluation of BrdU incorporation as an index for cell proliferation revealed a marked decrease during the first 12 h of treatment, suggesting that anticancer activity involves the inhibition of cell proliferation and induces cell death. ROS also increased according to the duration of the treatment, indicating intracellular accumulation is associated with the cell death. RT-PCR analysis revealed significant decreases in anti-apoptotic (Bax) and increases in pro-apoptotic gene expressions (Bci-2, caspase- 3, and 9) (p<0.05). Taken these together, blueberry extract induces ROS accumulation in MCF7 cells, causing inhibition of cell proliferation and eventually leading to cell death. This cell death was associated with apoptotic gene expression in blueberry-treated cells for up to 24 h.

Cell Death Induction Mechanism of Non-small Cell Lung Cancer Cell Line, NCI-H1703 by Docetaxel (Docetaxel에 의한 비소세포폐암세포주 NCI-H1703의 세포사멸 유도기전)

  • Ha Hyeon-Cheol;Song Seung-Hwan;Park Chin-Su;Kim Jong-Won;Kim Yeong-Dae
    • Journal of Chest Surgery
    • /
    • v.39 no.9 s.266
    • /
    • pp.668-673
    • /
    • 2006
  • Background: Docetaxel has been effectively used as an anti-cancer chemotherapuetic agent for various tumor treatments including lung cancer. However, the cell death induction mechanism(s) involved with docetaxel treatment in lung cancer cells has not been known yet. Material and Method: In the present study, the cellular and biochemical changes of NCI-H1703 cells (non-small cell lung cancer cell line, p53-mutant) after docetaxel treatment have been monitored by flow cytometry, fluorescence microscopy and western blot. Result: Docetaxel treatment significantly resulted in decrease of S phase as well as increase of G2 phase, and consequently evoked an increase of cell death in NCI-H1703 cells. After docetaxel exposure the activations of caspase-3 and caspase-9 were detected. Conclusion: Take together, it is suggested that the docetaxel induces NCI-H1703 cell death by caspase-9 and caspase-3 dependent mitochondrial apoptotic pathway.

From Cytosol to Mitochondria: The Bax Translocation Story

  • Khaled, Annette R.;Durum, Scott. K.
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.391-394
    • /
    • 2001
  • The balance between life and death of a cell regulates essential developmental processes in multicellular organisms. Apoptotic cell death is a complex, stepwise program involving multiple protein components that trigger and execute the demise of the cell. Of the many triggers of apoptosis, most are not well understood, but some key components have been identified, such as those of the Bcl-2 family, which function as anti-apoptotic or proapoptotic factors. Bax, a pro-apoptotic member of this family, has been shown to serve as a component of many apoptotic triggering cascades and its mechanism of action is the focus of intense study. Herein we discuss current, differing ideas on the function of Bax and its structure, and suggest novel mechanisms for how this death protein targets mitochondria, triggering apoptosis.

  • PDF

The Role of Lipid Peroxidation and Glutathione on the Glycochenodeoxycholic Acid-Induced Cell Death in Primary Cultured Rat Hepatocytes

  • Chu, Sang-Hui;Park, Wol-Mi;Lee, Kyung-Eun;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • Intracellular accumulation of bile acids in the hepatocytes during cholestasis is thought to be pathogenic in cholestatic liver diseases. The objective of this study was to determine the role of lipid peroxidation and glutathione on the bile acid-induced hepatic cell death mechanism in primary cultured rat hepatocytes. To induce hepatic cell death, we incubated primary cultured rat hepatocytes with glycochenodeoxycholic acid $(GCDC;\;0{\sim}400\;{\mu}M)$ for 3 hours. In electron microscopic examination and agarose gel electrophoresis, low concentration of GCDC treatment mainly induced apoptotic feature. Whereas $400\;{\mu}M$ GCDC treated cells demonstrated both apoptosis and necrosis. Lipid peroxidation was increased dose-dependently in GCDC treated hepatocyte. And this was also accompanied by decreased glutathione. Therefore, oxygen free radical damage may play a partial role in GCDC-induced hepatic cell death.

  • PDF

Astaxanthin Inhibits Autophagic Cell Death Induced by Environmental Hormones in Human Dermal Fibroblasts

  • Lim, Seong-Ryeong;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.218-218
    • /
    • 2020
  • Astaxanthin, a natural antioxidant carotenoid, has been thought to provide health benefits by decreasing the risk of oxidative stress?related diseases. In the present study, we investigated the effect of an astaxanthin during the autophagic cell death induced by bisphenol A (BPA) which is known major environmental pollutants. We found that astaxanthin significantly blocked the autophagic cell death via inhibition of intracellular Reactive Oxygen Species (ROS) in normal human dermal fibroblasts. Astaxanthin significantly inhibited the phosphorylation mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) responsible for the expression of LC3-II and Beclin-1 in BPA-treated normal human dermal fibroblasts. We suggest that astaxanthin blocks autophagic cell death induced by BPA via the inhibition of ROS-mediated signaling events in human dermal fibroblasts.

  • PDF

The underlying mechanism of calcium toxicity-induced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia

  • Jirakhamon Sengking;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.155-162
    • /
    • 2024
  • Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong;Kim, Se-Woon;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.