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Introduction

Stroke is a type of cerebrovascular disease which com-
monly occurs in adults and elderly. It remains the worldwide 
third majority cause of disability and death [1]. The incident 
of stroke cases infinitely increased to 70% from 1990 to 2019, 
and the mortality rate escalated to 40% [2]. More than 87% 
of strokes are presented as ischemia [3]. Cerebral ischemia or 
ischemic stroke is the insufficient blood supply and nutrient 
to the brain caused by cerebral artery occlusion leading to 
brain dysfunction sand damage [4]. The common forms of 
occlusion resulting in blood flow obstruction to the brain are 

thrombosis, the ruptured plaque from cerebral stenosis or 
atherosclerosis, and embolism, the clot formed in vessel and 
heart [5]. The severity of brain damage depends on occlusion 
time. Recombinant tissue‑type plasminogen activator is rec-
ommended for intravenous injection within 4.5 hours after 
stroke symptoms occurring. The golden hour for ischemic 
stroke treatment is less than 1 hour [6, 7]. Long-term cere-
bral artery occlusion without re-perfusion leads to perma-
nent brain injury. There are many homeostatic mechanisms 
occurring after cerebral vascular obstruction. Excessive 
glutamate releasing and calcium toxicity is the common 
stimulator arising in acute stage of ischemia, which can lead 
to various brain damage pathways [8]. Moreover, it involves 
the autophagic impairment and neuronal death stimulation 
during acute phase [9]. This article reviews the underlying 
mechanism of calcium toxicity related to autophagy up-
regulation in acute stage of permanent cerebral ischemia.
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Abstract: Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of 
blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are 
the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. 
Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, 
autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ 
accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment 
which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in 
acute stage of ischemic stroke.
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Review

Cerebral ischemia in acute stage

Anoxic depolarization and glutamate excitotoxicity 
Brain is the high energy consumption organ which main-

ly synthesizes more than 20% of total adenosine triphosphate 
(ATP) to retain its functions [10]. Neurons drive the neuronal 
signaling by conveying the electrochemical ions via ATPase 
ion pumps on cell membrane, called action potential [11, 12]. 
Neurotransmitters play a vital role in neuronal conducting 
of neuron to neuron both excitatory and inhibitory signaling 
[13, 14].

After the cerebral artery occlusion, decreased cerebral 
blood flow to the brain leads to reduced oxygen and glucose 
consumption because of depleted ATP produced from mi-
tochondria in neuron and glial cell [15, 16]. These result in 
ATPase ion pumps failure, known as anoxic depolarization 
including Na+/K+-ATPase (NKA), Na+/Ca2+-ATPase pumps 
(NCX) and Ca2+ ATPase channels. Generally, NKA pumps 2 
ions of K+ into neurons to evoke action potential and offers 
energy to NCX pumps which control the concentration of 
Ca2+, Na+ and K+ between extra- and intracellular space of 
neuronal cells [17-19]. Impaired ATPase ion pumps affect the 
flowing of ions into the cell and results in neuronal swelling 
[20]. Likewise, depleted ATP provokes voltage-gated calcium 
channel (VGCC) to maintain function resulting in intra-
cellular Ca2+ overload [21] Moreover, these engenders Ca2+ 
influx into presynaptic area leading to excessive glutamate 
releasing to synaptic space with glutamate re-uptake failure 
[22].

Glutamate is an excitatory neurotransmitter related to 
learning and memory, which is released from presynaptic 
terminals to stimulate other neuronal cells [23]. Neurons and 
astrocytes are the two major cells associated with glutamate 
metabolism [24]. Glutamate releasing activates ionotropic 
glutamate receptors and ligand-gated ion channels on post-
synaptic membranes which rapidly responses to allow ions 
inf lux and stimulate various downstream cascades [25]. 
Under ischemic conditions, excessive glutamate releasing, 
or glutamate excitotoxicity is the main point which triggers 
neuronal dysfunction in acute stage [26]. Immoderate gluta-
mate receptor activation promotes Ca2+ transferring into the 
cell, which can provoke a various cellular signaling resulting 
to neuronal death [27]. In addition, the dysfunction of ion 
exchange across neuronal membrane impels exorbitant Na+ 

influx causing hyperosmotic movement and cell swelling, 
respectively (Fig. 1) [28, 29].

NMDAr activation and calcium toxicity 
N-methyl-D-aspartate receptor (NMDAr) is a type of 

ligand-gated ion channel which plays an important role in 
early ischemia. Over activation of NMDAr by unnecessary 
glutamate releasing affects to intracellular Ca2+ accumula-
tion resulting to calcium toxicity, which can promote many 
signaling cascade associated with neuronal dysfunction and 
death [30, 31]. Excessive NMDAr stimulation is the major 
cause of neurotoxicity in acute ischemia. Abnormal Ca2-
dependent enzyme activation led to cell death signaling. 
NMDAr consists of 2 main heterotetrametric forms includ-
ing GluN1 and GluN2 subunits. These subunits have an im-
portant function in neuronal survival and neuronal death. 
GluN2 subunit is separated into 2 subtypes; GluN2A and 
GlutN2B. GluN2A is greatly expressed at synapse site of neu-
ron which plays a key role in neuronal survival [32, 33]. The 
activated GluN2A can activate phosphoinositide 3-kinase 
(PI3K) by binding to Ca2+ and calmodulin which phosphory-
lates protein kinase B (Akt), respectively. Phosphorylated 
Akt generally inhibits pro-apoptotic factors [21, 34]. More-
over, the activated NMDAr stimulates mitogen-activated 
protein kinases/extracellular signal-regulated kinases (ERK) 
pathway, the extracellular signaling regulated protein kinase 
and Ca2+/calmodulin-dependent protein kinase, the calcium 
signaling, that can provoke cAMP response element-binding 

Fig. 1. The underlying mechanism of anoxic depolarization and 
glutamate excitotoxicity after acute cerebral ischemia. AMPA, 
glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid receptors; Ca2+, calcium ion; Cl-, chloride ion; Glu, glutamate; 
Na+, sodium ion; NMDA, N-methyl-D-aspartate receptor; VDCC, 
voltage-dependent calcium channels.



Calcium toxicity and cerebral ischemia

https://doi.org/10.5115/acb.24.003

Anat Cell Biol 2024;57:155-162 157

www.acbjournal.org

protein (CREB) by phosphorylation to motivate anti-apop-
totic proteins [35].

Under ischemic condition, excessive glutamate releasing 
extremely stimulates NMDAr, especially GluN2B subtype, 
which promote pro-apoptotic cell death signaling cascade 
[36]. GluN2B is fully located at an extra-synaptic site. Over-
synaptic NMDAr can trigger GluN2B subtype to dephos-
phorylate and inhibit ERK and CREB signaling pathway 
resulting to pro-apoptotic activation [35, 37]. Furthermore, 
GluN2B also provokes postsynaptic density protein 95 
(PSD95) protein which downstream stimulates neuronal 
nitric oxide synthase (nNOS) by binding to the N-terminus, 
called GluN2B/PSD95/nNOS complex, leading to nitric ox-
ide (NO) production [38, 39]. NO interacts with superoxide 
radical molecules and critically forms reactive nitrogen spe-
cies (RNS) that are associated with protein oxidation, lipid 
peroxidation and DNA fragmentation [40].

Death associated protein kinase 1 (DAPK1), the mediator 
induced programmed cell death, is disinhibited from auto-
phosphorylation suppressing by high level of intracellular 
Ca2+ activated calmodulin (CaM) and leads to pro-apoptotic 
activation [41]. Likewise, DAPK1 can directly interact with 
the C-terminal region of GluN2B tail to escalate the stimula-
tion of GluN2B subtype. GluN2B/DAPK1 binding complex 
encourages more severity of neuronal damage [42]. Further-
more, activated DAPK1 can interact with programmed cell 
death 6 (PDCD6), tumor protein 53 and protein kinase D to 
promote both necrotic and apoptotic neuronal cell death [42-
44].

Over NMDAr activation vastly fluxes Ca2+ into the neu-
ron [45]. There is reported Ca2+ quickly influxes into the 
neuronal cell via NMDAr in the early stage of ischemia [46]. 
High Ca2+ concentration accumulated in cytoplasm can trig-
ger many downstream cascades of neuronal death signaling 
[8]. Calpain (CAPN) is a Ca2+-dependent cysteines protease 
which is greatly found in central nervous system [47]. In 
the brain, CAPN acts as Ca2+-dependent neuronal function 
controlling. CAPN is separated into 2 major isoforms which 
are CAPN1 or μ-calpain and CAPN2 or m-calpain [48]. In 
ischemic brain, CAPN1 is activated by excessive Ca2+ ac-
cumulation. Activated CAPN1 play a key role in neuronal 
death. CAPN1 is the protease enzyme that hydrolyzes vari-
ous cytoskeleton proteins causing neuronal dysfunction and 
apoptotic stimulation [49, 50]. Additionally, overactivated 
NMDAr downstream stimulates CAPN1 in cytosol which 
can cleave NCX channels at neuronal membrane resulting 

in promoting NCX channels dysfunction and poorly control 
Ca2+ influx [51]. Moreover, CAPN1 also affects to metabo-
tropic glutamate receptor 1 protein at cell membrane that 
normally motivates brain function and acts as neuroprotec-
tive by interacting with nuclear phosphoinositide-3-kinase 
enhancer to promote PI3K/Akt signaling pathway (Fig. 2) 
[52].

Autophagic cell death 
Autophagy is a self-digestive program for cellular homeo-

static maintaining and cell survival by degrading misfold 
proteins and damaged organelles to produce energy [53]. 
Macro-autophagy is the general form of autophagic process 
normally found in eukaryotic cells [54]. The common char-
acteristics are autophagosome forming and fuses with lyso-
some to degrade the deformed proteins and dysfunctional 
organelles [55]. The major key of autophagic initiation is 
mammalian target of rapamycin (mTOR) which is phos-
phatidylinositol 3-kinase-related kinase family and controls 
cellular physiology, protein synthesis and autophagy [56]. 
mTOR regulates autophagy by phosphorylation of Atg1/
ULK1 complex to form autophagopore with beclin-1 [57]. 
Beclin-1 is the autophagy regulator conjugated with PI3K 
class III to form beclin-1/Vsp34/Atg14/PI3K-III complex 
and stimulate autophagopore formation [58]. Microtubule-
associated proteins 1A/1B light chain 3A (LC3) are the main 
protein of autophagosome establishing. LC3-II plays an im-
portant role in double membrane elongation to form vesicles 
which engulf the damaged organelles and proteins, known 
as autophagosome [59]. Autophagosome is fused with lyso-
some called autophagolysosome to degrade the products by 
acid hydrolase within lysosome and obtain the final products 
as free fatty acids and amino acids to generate energy for cell 
survival [60, 61].

In ischemic brain condition, the research has focused on 
autophagy in the early stage. It is found that autophagy is the 
double-edged sword for cerebral ischemia [9, 62]. Excessive 
autophagy leads to neuronal death which rapidly increases 
in 3–12 hours after cerebral ischemia [63, 64]. CAPN1, the 
result of excessive Ca2+ overload, can cleavage beclin-1 lead 
to defection of autophagosome formation [65]. Moreover, 
CAPN1 also interrupts the function of Atg protein, the main 
protein functioning though autophagic process, families 
resulting in Atg protein dysfunction and autophagic f lux 
impairment [66]. In addition, high level of intracellular Ca2+ 
and reduced of ATP affects to AMP-activated protein kinase-
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alpha (AMPKα) phosphorylation, the target of autophagy 
up-regulation, which inhibits mTOR activation and promote 
over autophagic flux after ischemic occurring [67]. Incom-
plete autophagosome formation affects to autophagosome 
accumulation and trigger neuronal cell death, respectively 
(Fig. 2).

Lysosomal degradation 
Heat shock proteins (Hsp70) are associated with protein 

folding, complex formation, translocation, and protein deg-
radation. It prevents the abnormal protein formation under 
stress condition by translocating from the cytosol to the nu-
cleus [68-70]. Under cerebral ischemia, a recent study found 
that Hsp70 translocates to the luminal side of the lysosome 
to stabilize the lysosomal membrane [71]. The expression of 
Hsp70 is significantly increased in 6 hours after ischemic oc-
curring [72-74]. Lysosome, the membrane-bound organelle 
containing hydrolytic enzyme, is an important component 
of autophagic process [55]. Under ischemic conditions, 
lysosome is destroyed by CAPN1 which induces lysosomal 
membrane permeability resulting to lysosomal breakdown 
and hydrolytic enzyme releasing into cytoplasm. These can 
trigger cell death signaling in neuronal cell [75, 76].

In cerebral ischemia, ATP depletion in the brain stimu-
lates anoxic depolarization, resulting in NMDAr overexpres-
sion and intracellular Ca2+ accumulation. These changes can 
activate CAPN1 [22, 77], which translocates to the lysosomal 
membrane, a change that alters lysosomal membrane per-
meability, causing the membrane to rupture and cathepsin 
B release into the cytosol [75, 76, 78]. Moreover, NMDA 
receptor overexpression provokes nNOS activity, leading 
to NO generation [79]. Over NO generation is the cause of 
4-HNE production resulting from lipid peroxidation [79, 80]. 
CAPN1 and 4-HNE provoke Hsp70 carbonylation, leading 
to Hsp70 dysfunction and the loss of lysosomal membrane 
stability. Consequently, the lysosomal membrane ruptures 
and cathepsin B is released [71, 81-84]. Cathepsin B release 
can activate caspase-3 via caspase-11, which leads to apopto-
sis in the brain (Fig. 2) [85-87].

Therapeutic effects of nmdar antagonist
It is reported that blocking NMDAr by NMDAr antago-

nist can reduce brain damage from excitotoxicity and intra-
cellular Ca2+ accumulation as neuroprotection in acute stage 
[38, 88]. The researcher found that ifenprodil, the GluN1 and 
GluN2B subunits inhibitor, reduced neuronal death in tran-

Fig. 2. The underlying mechanism of calcium toxicity induced autophagic cell death and lysosomal degradation related to neuronal cell death. 
4-HNE, 4-hydroxynonenal; Akt, protein kinase B; AMPK, 5’ AMP-activated protein kinase; Atg, autophagy related protein; Bax, Bcl-2-
associated X protein; Bcl-2, B-cell lymphoma 2; BNIP3, Bcl-2 interacting protein 3; Ca2+, calcium ion; CaMKKβ, Ca2+/calmodulin-dependent 
protein kinase kinase β; CaMKII, Ca2+/calmodulin-dependent protein kinase II; DAMPs, damage-associated molecular patterns; HIF-1, 
hypoxia-inducible factor 1; Hsp70, heat shock protein 70; LAMP-1, lysosomal associated membrane protein 1; mTOR, mammalian target of 
rapamycin; nNOS, nitric oxide synthase; NO, nitric oxide; ONOO-, peroxynitrite; PI3K, phosphoinositide 3-kinase; TNFR, tumor necrosis 
factor receptor; ULK1, UNC-51-like kinase 1; VSP34, phosphatidylinositol 3-kinase VPS34 complex; NMDA, N-methyl-D-aspartate receptor; 
VDCC, voltage-dependent calcium channels; LC3, light chain 3.
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sient cerebral ischemic rat together with contribute phos-
phorylation of CREB protein as neuroprotective effect [89]. 
Nimodipine, the VGCC, was used to delay brain damage in 
early cerebral ischemia. It is found that nimodipine injec-
tion via intra-arterial administration protects the brain from 
cerebral ischemic injury after aneurysmal subarachnoid 
hemorrhage [90]. Treated with icaritin (ICT), the natural 
compound extracted from traditional Chinese herb (Epi-
medium Genus), can protect neuronal cell from glutamate-
induced neuronal cell damage by inhibiting DAPK1 and 
GluN2B activation with promoting phosphorylation of ERK 
and GluN2A expression, which reduce neuronal cell death in 
ischemic rats [91].

Regulated autophagy is an important process which can 
maintain cellular energy and promote cell survival under 
ischemic conditions [92]. The potential therapeutic treat-
ments for autophagic regulation in cerebral ischemia are 
interesting. Many researchers reported that regulated au-
tophagy by promoting mTOR activation can reduce brain 
damage in ischemic condition [93, 94]. Furthermore, the 
alternative treatment with natural compounds also improves 
autophagy in ischemia [95]. In glutamate-induced excitotoxic 
neuroblastoma cell, treated with ST2-104, the nona-arginine 
(R9)-fused CBD3 peptide, reduce Ca2+ accumulation in cyto-
sol with decrease cell death via Ca2+/calmodulin-dependent 
protein kinase kinase 2 (CaMKKβ) regulation. Moreover, 
ST2-104 control autophagic process via CaMKKβ/AMPK/
mTOR pathway. Likewise, ST2-104 protect the rat brain from 
transient cerebral ischemic injury after transient cerebral 
ischemia [96]. Neferine is the alkaloid compound extracted 
from lotus seeds. It demonstrates the attribute of Ca2+ chan-
nel blocker [97], which can moderate intracellular Ca2+ level 
and regulate autophagic f lux via Ca2+-dependent AMPK/
mTOR pathway leading to reduce of brain infarction in acute 
permanent ischemic rats [98].

Blocking NMDAr can reduce neuronal cell damage from 
glutamate and intracellular Ca2+ toxicity in early cerebral 
ischemia. However, the severity of ischemic brain varies to 
occlusion time. Treatment with NMDAr antagonist is suit-
able for acute cerebral ischemia. The effects of treatment are 
less efficient to prevent brain damage in long-term occlusion 
[99, 100].

Conclusion

In the early stage of cerebral ischemia, glutamate exci-

totoxicity and Ca2+ ions overload play an important role in 
neuronal dysfunction which can disturb the various cellular 
physiologies and trigger many downstream cascades of cell 
death. Autophagy is one of the essential processes which is 
affected after acute cerebral ischemic occurring. Excessive 
autophagic f lux and lysosomal degradation led to neuro-
nal cell death stimulation. Contrarily, regulated autophagy 
promotes cell survival and protects the neuron from second 
damage of ischemia.
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