• Title/Summary/Keyword: Cell Death

Search Result 3,446, Processing Time 0.029 seconds

Apoptosis-Induced Gene Profiles of a Myeloma Cell P3-X63-Ag8.653

  • Bahng, Hye-Seung;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • Background: Apoptosis is a physiologic phenomenon involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. The mouse myeloma cell P3-X63-Ag8.653 (v653) is an HGPRT deficient $(HGPRT^-)$ mutant strain. High dependency on de novo transcription and translation of aminopterin induced apoptosis of this cell seems to be an ideal experimental system for searching apoptosis-induced genes. Methods & Results: For searching apoptosis-related genes we carried out GE-array (dot blot), Affymetrix GeneChip analysis, Northern analysis and differential display-PCR techniques. The chip data were analyzed with three different programs. 66 genes were selected through Affymetrix GeneChip analyses. All genes selected were classified into 8 groups according to their known functions. They were Genes of 1) Cell growth/maintenance/death/enzyme, 2) Cell cycle, 3) Chaperone, 4) Cancer/disease-related genes, 5) Mitochondria, 6) Membrane protein/signal transduction, 7) Nuclear protein/nucleic acid binding/transcription binding and 8) Translation factor. Among these groups number of genes were the largest in the genes of cell growth/maintenance/death/enzyme. Expression signals of most of all groups were peaked at 3 hour of apoptosis except genes of Nuclear protein/nucleic acid binding/transcription factor which showed maximum signal at 1 hour. Conclusion: This study showed induction of wide range of proapoptotic factors which accelerate cell death at various stage of cell death. In addition apoptosis studied in this research can be classified as a type 2 which involves cytochrome c and caspase 9 especially in early stages of death. But It also has progressed to type 1 in late stage of the death process.

Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

  • Noh, Kyung Tae;Cha, Gil Sun;Kang, Tae Heung;Cho, Joon;Jung, In Duk;Kim, Kwang-Youn;Ahn, Soon-Cheol;You, Ji Chang;Park, Yeong-Min
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56]

Coptidis Rhizoma Extract induces Apoptotic Cell Death in YD-10B Cell (황련(黃連)이 구강암 세포에서의 세포자멸사에 미치는 영향)

  • Lee, Jae-Geun;Park, Sook-Jahr;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.50-59
    • /
    • 2009
  • Objectives : The aim of this study was conducted that CRE (Coptidis Rhizoma Extract) induces apoptosis in YD-10B cells, human oral squamous carcinoma cell line. Methods : In this study, YD-10B cells were exposed to CRE (0.03-0.30 mg/ml), for 6-24 hours. We measured the effects of CRE on the changes of cell viability and cell membrane, TUNEL assay of CRE-treated YD-10B cell. Results : In this study, CRE caused a decrease of viability in YD-10B cells, human oral squamous carcinoma cell line. When YD-10B cells were treated with CRE, cells showed dose-dependent manner apoptotic cell death. Conclusions : These results suggest that CRE may be potential therapeutic approach in the clinical management of oral squamous cell carcinoma.

  • PDF

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin;Lee, Eun-Jee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2009
  • Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

Cell Death Induced by Ethanol : Prevention of Cell Death by the bcl-2 Proto-Oncogene (에탄올 유래 세포사망 : bcl-2 proto-oncogene에 의한 세포사망 저해)

  • Lim, Eun-Jeong;Hong, Kyoung-Ja;Yang, Byung-Hwan;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.211-217
    • /
    • 1997
  • The Bcl-2 protein has been shown to block apoptosis induced by a variety of stimuli. We have performed the experiments which cell death can be blocked by the bcl-2 proto-oncogene under moderate(50-100mM) or high ethanol treatment(400-600mM). As a result of morphological changes, and MTT assay, cell death was blocked by Bcl-2 under 100mM ethanol. However, the results of DNA fragmentation and RT-PCR(ICE, and CPP32), immunoblotting(CPP32, and PARP) for SK-pcDNA3 cells(vector only) and SK-Bcl-2 cells(stably expressed bcl-2 gene) were showen to be no significant differences between two cell lines. These results suggested that cell death induced by ethanol was not followed by apoptosis mechanism, and was blocked by the bcl-2 proto-oncogene with moderate ethanol.

  • PDF

Chemotherapeutic Candidate Inducing Immunological Death of Human Tumor Cell Lines

  • Oh, Su-Jin;Ryu, Chung-Kyu;Choi, In-Hak;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.66-69
    • /
    • 2012
  • The immunological death induction by EY-6 on the human tumor cell lines was screened. Human colon carcinoma (HCT15, HCT116), gastric carcinoma (MKN74, SNU668), and myeloma (KMS20, KMS26, KMS34) cells were died by EY-6 treatment with dose-dependent manner. CRT expression, a typical marker for the immunological death, was increased on the EY-6-treated colorectal and gastric cancer cells. Interestingly, the effects on the myeloma cell lines were complicated showing cell line dependent differential modulation. Cytokine secretion from the EY-6 treated tumor cells were dose and cell-dependent. IFN-${\gamma}$ and IL-12 secretion was increased in the treated cells (200% to over 1000% of non-treated control), except HCT116, SNU668 and KMS26 cells which their secretion was declined by EY-6. Data suggest the potential of EY-6 as a new type of immuno-chemotherapeutics inducing tumor-specific cell death. Further studies are planned to confirm the efficacy of EY-6 including in vivo study.

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.

Radiation-induced Cochlea Hair Cell Death: Mechanisms and Protection

  • Tan, Pei-Xin;Du, Sha-Sha;Ren, Chen;Yao, Qi-Wei;Yuan, Ya-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5631-5635
    • /
    • 2013
  • Cochlea hair cell death is regarded to be responsible for the radiation-induced sensorineural hearing loss (SNHL), which is one of the principal complications of radiotherapy (RT) for head and neck cancers. In this mini-review, we focus on the current progresses trying to unravel mechanisms of radiation-induced hair cell death and find out possible protection. P53, reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) pathways have been proposed as pivotal in the processes leading to radiation hair cell death. Potential protectants, such as amifostine, N-acetylcysteine (NAC) and epicatechin (EC), are claimed to be effective at reducing radiation-inducedhair cell death. The RT dosage, selection and application of concurrent chemotherapy should be pre-examined in order to minimize the damage to cochlea hair cells.

Stearoyl-CoA desaturase induces lipogenic gene expression in prostate cancer cells and inhibits ceramide-induced cell death

  • Kim, Seung-Jin;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Perturbation of metabolism with increased expression of lipogenic enzymes is a common characteristic of human cancers, including prostate cancer. In the present work the overexpression of stearoyl-CoA desaturase (SCD) in LNCaP cells led to increased mRNA levels of fatty acid synthase (FAS) and acetyl-CoA-carboxylase-a, whereas micro RNA-mediated silencing of SCD inhibited the expression of these lipogenic genes in LNCaP cells. Treatment with the FAS-specific inhibitor cerulenin inhibited SCD induction of LNCaP cell proliferation. In addition, a transient transfection assay revealed the capability of cerulenin to suppress SCD and dihydrotestosterone induction of androgen receptor transcriptional activity. Furthermore, overexpression of SCD in LNCaP cells produced marked resistance to ceramide-induced cell death with reduced poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, silencing of SCD expression increased Bax protein in LNCaP cells. Furthermore, addition of ceramide to SCD knockdown LNCaP cells increased cell death and caspase-3 activity with drastic increase of PARP cleavage. Together, the data indicate that SCD may provide resistance of prostate cancer cells to ceramide-induced cell death.

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.