• Title/Summary/Keyword: Cell Block

Search Result 782, Processing Time 0.032 seconds

Design of Dynamic Time Warp Element for Speech Recognition (음성인식을 위한 Dynamic Time Warp 소자의 설계)

  • 최규훈;김종민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.543-552
    • /
    • 1994
  • Dynamic Time Warp(DTW) needs for iterative calculations and the design of PE cell suitable for the operations is very important. Accordingly, this paper aims at real time recognition design enables large dictionary hardware realization using DTW algorithm. The DTW PE cell separated into three large blocks. "MIN" is the one block for counting accumulated minimum distance. "ADD" block calculates these minimum distances, and "ABS" seeks for the absolute values to the total sum of local distances. Circuit design and verification about the three block have been accomplished, and performed layout '||'&'||' DRC(design rule check) using 1.2 m CMOS N-Well rule base.CMOS N-Well rule base.

  • PDF

Effects of the Block Arrangement on the Collection Efficiency in the Two-Stage Electrostatic Precipitator with Charging Plate (평판형 방전판을 갖는 2단식 전기집진기의 집진판 블록배열이 집진효율에 미치는 영향)

  • 박성호;박청연;김태권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.641-652
    • /
    • 2000
  • The effect of block arrangement has been investigated on the particle deposition in the specified collecting cell of two-stage electrostatic precipitator by numerical analysis. Recirculation zone existed at the downstream of the block in the collecting cell, and the particles entering the recirculation zone were deposited on the collecting plate. Particle trajectory and deposition had considerably different phenomenon according to electrostatic and inertial effect, which depended on inlet mean velocity, electrostatic number, and particle diameter in the collecting cell. The total collection efficiency reached a minimum value through an interaction of electrostatic and inertial effect. In the computational domain, total collection efficiency for the case of two blocks in the computational domain was more than that of one block at the relative small electrostatic number. However as the block distance and inertial effect increased, the difference between the collection efficiency of two cases decreased. In the range of relatively small particle size total collection efficiency was always superior to particle collection efficiency that was predicted by Deutsch equation.

  • PDF

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

Developmental Capacity of Chimeric Embryo Aggrigated with Phytohemagglutinin-M( PHA-M) in the Mouse (Phytohemagglutinin-M(PHA-M)으로 응집한 마우스 키메라배의 체외발생능력)

  • 김광식;송해범
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.247-251
    • /
    • 1997
  • This research was conducted to observe developmental capacity of the early embryos aggrigated to phytohemagglutinin-M(PHA-M) in the culture of mouse embryos in vitro. The results showed that the development of blastocyst increased to 2-celT >< 2-cell : 68. 9%, 4-cell $\times$4-cell : 92.5% and 8-cell $\times$8-cell : 97.3% in the aggrigated embryos of ICR mouse, and 2-cell $\times$ 2-cell : 90.0%, 4-cell $\times$4-cell : 93.9% and 8-cell $\times$ 8-cell : 100% in the aggrigated embryos of two different strains (ICR $\times$ CBA/J mouse). (Key words : aggrigated embryos, in vitro 2-cell block, phytohemagglutinin-M, blastocyst)

  • PDF

An Efficient Parallelized Algorithm of SEED Block Cipher on Cell BE (CELL 프로세서를 이용한 SEED 블록 암호화 알고리즘의 효율적인 병렬화 기법)

  • Kim, Deok-Ho;Yi, Jae-Young;Ro, Won-Woo
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.275-280
    • /
    • 2010
  • In this paper, we discuss and propose an efficiently parallelized block cipher algorithm on the CELL BE processor. With considering the heterogeneous feature of the CELL BE architecture, we apply different encoding/decoding methods to PPE and SPE and improve the throughput. Our implementation was fully tested, with execution results showing achievement of high throughput, capable of supporting as high network speed as 2.59 Gbps. Compared to various parallel implementations on multi-core systems, our approach provides speedup of 1.34 in terms of encoding/decoding speed.

The Effect of Acetylcholine on the Intracellular $Ca^{2+}$ Increase of the Mouse Early 2-cell Embryos (생쥐 초기 2-세포 배의 세포내 칼슘 증가에 미치는 Acetylcholine의 영향)

  • Yoon S. Y.;Kang D. W.;Bae I. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.191-200
    • /
    • 2005
  • Many studies have shown that the development of mouse early 2-cell embryos in vitro is related with the intracellular $Ca^{2+}$ changes. In ICR strain mouse, the development of embryos arrests at early 2-cell stage, but the arrested early 2-cell embryos can be rescued by the addition of $Ca^{2+}$-related materials. Acetylcholine (ACh) increases intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) via the mAChR-PLC-IP3 pathway in mouse oocytes. We examined whether ACh rescues 2-cell block in mouse. In early 2-cell embryos, ACh increased [$Ca^{2+}$]i in a dose-dependent manner (p<0.001), and had an effect on rescue of 2-cell block and embryonic development. To identify the signal pathway involved in ACh-induced rescue of 2-cell block, we first applied an agonist of ACh receptor (AChR). Like ACh, carbachol increased intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) and atropine, an antagonist of ACh receptor, blocked the ACh-induced $Ca^{2+}$ increase. In $Ca^{2+}$-free medium, ACh also increased [$Ca^{2+}$]i, indicating that $Ca^{2+}$ increased by ACh is mainly released from the intracellular $Ca^{2+}$ store. The ACh-induced $Ca^{2+}$ increase was blocked by PLC inhibitor (U73122), ryanodine receptor (RyR) antagonist (dantrolene), and CaM KII inhibitor (KN-93), but not by IP3R antagonists (xestospongin C). These results show that ACh increases intracellular $Ca^{2+}$ concentration via mAChR/PLC/RyR, and this contributes to the rescue of 2-cell block.

Performance Evaluation of Buffer Management Schemes for Implementing ATM Cell Reassembly Mechanism

  • Park, Gwang-Man;Kang, Sung-Yeol;Lie, Chang-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 1997
  • An ATM switching system may be designed so that communications between processors of its control part can be performed via its switching network rather than a separate inter-processor communications (IPC) network. In such a system, there should be interfaces to convent IPC traffic from message format to cell format and vice versa, that is, mechanisms to perform the SAR (Segmentation And Reassembly) sublayer functions. In this paper, we concern the cell reassembly mechanism among them, mainly focussed on buffer management schemes. We consider a few alternatives to implement cell reassembly function block, namely, separated buffering, reserved buffering and shared buffering in this paper. In case of separated and reserved buffering, we employ a continuous time Markov chain for the performance evaluation of cell reassembly mechanism, judicially defining the states of the mechanism. Performance measures such as measage loss probability, mean number of message queued in buffer and average reassembly delay are obtianed in closed forms. In case of shared buffering, we compare the alternatives for implementing cell reassembly function block using simulation because it is almost impossible to analyze the mechanism of shared buffering by analytical modeling. Some illustrations are given for the performance analysis of the alternatives to implement cell reassembly function block.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

Fabrication and characterization of block copolymer (PCL/PCL-PEG) nanofibers binding with collagen by electrospun (콜라겐 코팅된 블록공중합(PCL/PCL-PEG) 나노섬유의 제조 및 특성분석)

  • Lee, Jin Woo;Yoon, Kuk Ro
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.228-233
    • /
    • 2014
  • Electrospun polymeric nanofibers have been extensively studied for biomedical materials because of their unique structures and relatively easy fabrication with biocompatible polymers. The amount of surface exposed amine groups increases as the blend ratio of block copolymer increases. Cell attachments on the nanofibers change according to the ratio of the block copolymer ((Poly(e-caprolactone, PCL), Poly(e-caprolactone)-Poly (ethylen glycol-$NH_2$)) in the blend. We assume that the PEG and amine moiety plays a significant role in biocompatibility of nanofiber surfaces. Collagen was used as a grafting material on the composite nanofibers to enhance the cell adhesion because the collagen is a major constituent of connective tissue.