
CELL 프로세서를 이용한 SEED 블록 암호화 알고리즘의 효율적인 병렬화 기법 275

CELL 프로세서를 이용한 SEED 블록 암호화 알고리즘의

효율적인 병렬화 기법

김 덕 호
†
․이 재 영

††
․노 원 우

†††

요 약

본 논문에서는 Cell BE 프로세서를 사용한 효율적인 병렬 블록 암호화 알고리즘을 제시한다. 제안하는 알고리즘은, 이종 프로세서인 Cell

BE의 특성을 효율적으로 활용하기 위하여 PPE와 SPE에 서로 다른 부호화/복호화 방식을 적용하여 그 성능을 개선하였다. 본 논문에 제시된

구현 방식을 바탕으로 검증된 결과에 따르면, 제안하는 알고리즘은 고성능 네트워크 시스템을 지원할 수 있는 2.59Gbps의 성능을 보여준다. 이

는, 다른 다중 코어 프로세서의 병렬 구현 방식과 비교할 때, 1.34배 증가된 성능의 부호화/복호화 속도를 제공한다.

키워드 : SEED 블록 암호 알고리즘, Cell BE 프로세서, 병렬화, 다중 코어 프로세서

An Efficient Parallelized Algorithm of SEED Block Cipher on Cell BE

Deokho Kim
†
․Jaeyoung Yi

††
․Won Woo Ro

†††

ABSTRACT

In this paper, we discuss and propose an efficiently parallelized block cipher algorithm on the CELL BE processor. With considering the

heterogeneous feature of the CELL BE architecture, we apply different encoding/decoding methods to PPE and SPE and improve the

throughput. Our implementation was fully tested, with execution results showing achievement of high throughput, capable of supporting as

high network speed as 2.59 Gbps. Compared to various parallel implementations on multi-core systems, our approach provides speedup of

1.34 in terms of encoding/decoding speed.

Keywords : SEED block cipher, Cell BE, parallelization, multi-core processor

1. Introduction 1)

As the need for information security increases in our

everyday life, the procedure of encoding/decoding data

becomes a critical issue in data network systems. Indeed,

cryptography has been a major application domain of the

diplomatic and military areas. Moreover, the importance of

cryptography is continuously growing in our current

world of informational society, highly used in electronic

commerce, electronic signature, or digital authorization.

Cryptosystems must ensure that private information does

not leak out to unauthorized users.

 ※ 본 연구는 2009년 한국산학협동재단의 지원을 받아 수행되었음
†준 회 원 :연세대학교 전기전자공학과

††정 회 원 : LG전자 CTO System IC 연구원
†††종신회원:연세대학교 전기전자공학과 조교수
논문접수 : 2010년 9월 9일
수 정 일 : 1차 2010년 10월 28일
심사완료 : 2010년 11월 15일

To this point, there have been various encryption

algorithms such as DES(Data Encryption Standard)[1],

AES(Advanced Encryption Standard)[2], and FEAL(Fast

data Encipherment ALgorithm)[3] developed. In fact, with

high network transmission rate, the process of

encryption/decryption is one of the major bottlenecks in

contemporary systems[4]. As a result, high-speed

encoding is required especially when sending a large

amount of important information with high-speed

transmission or on Virtual Private Networks(VPN).

The performance requirement of the cryptosystem

includes high computational ability, high data throughput,

and adaptability to the protocol changes. To address this

request, the Cell Broadband Engine(Cell BE) architecture

is an attractive match for the cryptosystem imple-

mentation. The Cell BE processor provides a multiple

number of general purpose programmable cores targeting

DOI: 10.3745/KIPSTA.2010.17A.6.275

276 정보처리학회논문지 A 제17-A권 제6호(2010.12)

PPE

L1
L2

XDR
RAM

XDR
RAM

Memory
Controller

Memory
Controller

EIB

I/O
controller

I/O
controller

SPE5 SPE6 SPE7 SPE8

SPE1 SPE2 SPE3 SPE4

(Fig. 1) The Cell Broadband Engine architecture

a broad set of workloads, intensive multimedia and

scientific processing. Since many cryptographic algorithms

consist of a large amount of homogenous computations,

using the Cell BE can exploit a high level of parallelism

and achieve increased computational performance which

will ensure high data throughput.

Our contribution in this paper is that we develop an

efficient parallel algorithm of the SEED block cipher on

the Cell BE architecture with proper task mapping and

load balancing. The design is fully functional and we

have achieved a 2.59 Gbps throughput. The results are

superior to the performance achieved by other parallel

implementations on the various multi-core general

purpose processor platforms.

2. Background

2.1 The Cell BE processor

The Cell Broadband Engine(Cell BE) is a multi-core

processor developed by Sony, IBM, and Toshiba in 2000.

The Cell BE processor contains one Power Processor

Element(PPE), eight Synergistic Processor Elements

(SPEs), Direct Memory Access(DMA), and synchronization

mechanisms in order to communicate with each element,

and the Element Interconnection Bus(EIB). It runs on a

clock frequency of 3.2GHz and has features of Single

Instruction Multiple Data(SIMD) execution units, high

power- and area-efficiency, large memory bandwidth, a

large bandwidth on-chip coherent bus, and

high-bandwidth flexible I/O[5].

(Figure 1) represents the Cell BE architecture schema-

tically. The Cell BE processor has two channels of 256

MB high-bandwidth DRAM memory. The central EIB is

a coherent bus that can transfer up to 96 byte/s. It

consists of four 16 byte rings which can transfer data in

only one direction, and each ring supports up to three

simultaneous data transfers. However, despite of some

limitation the Cell BE supports six SPEs for

programming on PlayStation 3.

The PPE contains a 32 KB instruction memory, 32 KB

data L1 cache, and 512 KB L2 cache. The PPE is a

dual-threaded, dual-issue(In-order issue), 64-bit

Power-architecture processor with AltiVec vector

execution unit. The dual-issue design is optimized by

interleaving instructions from two computational to

maintain maximum efficiency. The PPE can use

VMX(Vector Multimedia eXtensions), which was

developed for the IBM power PC processors, with AltiVec

unit.

The SPE is composed of 256 KB Local store, 128 bit

SIMD unit and MFC(Memory Flow Controller). The MFC

supports naturally aligned DMA transfer sizes of 1, 2, 4 or 8

bytes, and multiples of 16 Bytes, with a maximum transfer

size of 16 KB per transfer with DMA command. On a SPE,

it consumes only two cycles for simple fixed point operation,

six cycles for single-precision floating point and load

instructions. Moreover double-precision has maximum issue

rate of one SIMD instruction per seven cycles.

The Cell BE processor uses 256 MB of the Rambus

XDR DRAM memory. This memory delivers 12.8 GB/s

per 32-bit memory channel and the two channels are

supported on the Cell BE processor for a total bandwidth

of 25.6 GB/s.

The Cell processor provides a SIMD feature in the

vector unit on the PPE and in the SPEs[6]. SIMD units

have been demonstrated to be effective in accelerating

required computation for multimedia applications.

The PPE has VMX SIMD units called AltiVec. The

AltiVec unit supports a floating point and integer SIMD

instruction set designed by the Apple, the IBM and the

Freescale Semiconductor. The trade name is owned solely

by the Freescale Semiconductor and the Apple refers it to

as Velocity Engine. It supports for 16-way parallelism for

8-bit, 8-way parallelism for 16-bit and 4-way parallelism

for 32-bit signed and unsigned integers and IEEE

floating-point numbers with separate 128-bit wide,

32-entry register files.

The SPE has a SIMD unit enhanced than AltiVec

units on the PPE. The SPE does not have separated

register file but it has same register file for vector and

scalar execution units. The register file has 128-entries

and 128 bits wide. The SIMD unit supports including

what the AltiVec supports and 2-way parallelism for

64-bit signed and unsigned integers and IEEE double

precision numbers[7].

CELL 프로세서를 이용한 SEED 블록 암호화 알고리즘의 효율적인 병렬화 기법 277

A B C D

A || B

A B C D

8

+

-

-

+

G

G

Ki,0

Ki,1

KCi-1

KCi-1

(Fig. 2) Round-key creation algorihtm

C D

+

G

G

+

G

+

C’ D’

Ki,0 Ki,1

(Fig. 3) Structure of F-function

2.2 Overview of SEED algorithm

The SEED block cipher algorithm has been developed

by KISA(Korea Information Security Agency) in 1998, by

the government’s concern on the importance of cipher

systems. It has become a national standard since year

2000, and has been adapted to most of the security

systems[8].

The SEED design consists of the round-key generator,

F-function, G-function, and S-boxes. The SEED

algorithm processes a block size of 128-bit plain-text

using a 128-bit cipher key, producing a 128-bit

cipher-text. It is a private key algorithm, meaning that it

uses the same key for encryption and decryption, and has

a Feistel structure[9] with 16 rounds, in order to make it

secure. The 128-bit input text stream is divided into two

64-bit blocks, L0 and R0. The first output R1 is the

result of L0 exclusive-or F(R0). On the other side, R0

bypasses to L1 which becomes one of the two inputs to

Round 2. After processing the data through 16 rounds,

they will result in two 64-bit blocks forming the 128-bit

cipher-text output.

The round-keys are created by shift of bits, arithmetic

operations, G functions and constants of golden ratio. The

input user-key has 128-bit length and is separated into

four 32-bit blocks and the input generates couple of

round keys for 16 rounds.

(Figure 2) depicts the algorithm that generates round

keys Ki,0 and Ki,1 for ith round. KCi means ith golden

ration constant and || means concatenation of two data

blocks. Two 32-bit blocks, located on C and D, are not

change during round. In the next round the C and D of

previous rounds inserted to location of A and B. In

addition, direction of shift operation changes opposite at

every round. In first round, if shift operation shifts

concatenation of A and B to right then, shift operator at

next round shifts the concatenated blocks to left. The

round-keys are generated with the algorithm until it

produces keys for 16 rounds

The F-function of SEED has a Feistel structure, and

provides resistance against differential cryptanalysis, linear

analysis, and other known attacks. (Figure 3) represents

the structure of F-function. The F-function divides 64-bit

block input into two 32-bit blocks and processes them

through a mixture of xors, additions(mod 32) and

G-functions, by inputting 64 bit round keys Ki,0 and Ki,1.

The F-function is represented as following equations.

Where C and D are upper and lower half of 64 bit inputs

respectively and C' and D' are result of F-functions.

C' = G[G[G{(C⊕Ki,0)⊕(D⊕Ki,1)}⊞(C⊕Ki,0)]⊞

G{(C⊕Ki,0)⊕(D⊕Ki,1)}] ⊞G[G{(C⊕Ki,0)⊕(D⊕Ki,1)}

⊞(C⊕Ki,0)]

D' = G[G[G{(C⊕Ki,0)⊕(D⊕Ki,1)}⊞(C⊕Ki,0)]

⊞G{(C⊕Ki,0)⊕(D⊕Ki,1)}]

Where(a ⊕ b: a bit-wise exclusive-or b, a ⊞ b:(a+b)

mod 2
32)

The G-function is the main function used in the

F-function and also in the round key generation. A 32-bit

input is divided into four 8-bit blocks which are passed

through S-boxes. The outputs of S-boxes are processed

with bitwise and, then xor operations to produce the

32-bit output of the G-function. The two S-boxes S1 and

S2 are represented by two lookup tables[8]. The S-boxes

are derived from nonlinear functions, defined as following.

  →    
∙

⊕

278 정보처리학회논문지 A 제17-A권 제6호(2010.12)

PPE XDR RAM

P
P

E
 thread0

P
P

E
 thread1

S
P

E
0

S
P

E
6

SPE0

Local memory

DMA

EA address

SPE6

Local memory

DMA

EA address

(a)

A1 A2 A3 A4

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

REG1

REG1

REG2

REG3

REG4

(b)

(Fig. 4) Issues in implementation

where n1 = 247, n2 = 251, b1 = 169, b2 = 56

However the non-linear transformation has large time

to calculate on programming language code. The G

function is reconstructed as four SS-boxes. The

SS-boxes can be formulated as following equations

SS3 = S2(X3)&m2∥S2(X3)&m1∥S2(X3)&m0∥S2(X3)&m3

SS2 = S1(X2)&m1∥S1(X2)&m0∥S1(X2)&m3∥S1(X2)&m2

SS1 = S2(X1)&m0∥S2(X1)&m3∥S2(X1)&m2∥S2(X1)&m1

SS0 = S1(X0)&m3∥S1(X0)&m2∥S1(X0)&m1∥S1(X0)&m0

where || is concatenation and a & b: a bit-wise and b

The result of G-function is derived from following

equation.

Z = SS3(X3)⊕SS2(X2)⊕SS1(X1)⊕SS0(X0)

where ⊕ is a bit-wise exclusive-or.

3. SEED implementation on Cell BE

The Cell BE architecture is very efficient and is

suitable for exploiting parallelism of the SEED algorithm.

In fact, our SEED algorithm is implemented on the Cell

BE as a manner of a multi-threaded program. The

encryption component of the algorithm which is

distributed in 16 rounds occupies a significant percentage

of the total execution time. Consequently, this step is

implemented to run in parallel on the six SPEs available

in the programming level on the Cell BE platform.

Our design uses the Cell BE’s heterogeneous structure

appropriately with considering the load balancing between

the PPE and SPEs. Both PPE and SPEs execute the 16

rounds of the algorithm, with computation of F-functions

and G-functions. In addition, the PPE creates the round

keys and manages the SPEs transporting data and

signals to the SPEs with DMA commands.

The detailed operation for data transfer is described in

(Figure 4)-(a). The data is transferred from the main

memory(XDR RAM in the (Figure 4)-(a)) to the SPE’s

local memory with main memory address called effective

address. The PPE first sets up environment variables for

each of the SPE threads. Then, it assigns each of the

threads to the dedicated SPE. Each SPE checks the

effective address whether it is null or not, then SPE

starts DMA command to transfer the necessary data with

the 64 bit effective address. After waiting data transfer,

SPE processes 16 round operations of SEED.

Memory alignment is also taken into consideration

when developing the parallelized SEED algorithm as

shown in (Figure 4)-(b). The 128-bit input in the

algorithm is divided into four 32-bit parts, and then

processed with bitwise operations and shift operations. In

order to take advantage of the SIMD structure of the

SPEs, data are aligned in the transfer process from the

main memory to the SPE’s local memory. Instead of

receiving the 128-bit input data on one 128-bit register,

the data is broken up into four parts to go into four

registers. Three other 128-bit input data are decomposed

and distributed into the four registers in the same way.

This allows the SIMD units to simultaneously execute

the same instruction on four 32-bit data. Accordingly, the

encoding/decoding throughput is increased by four times

As for the S-box function, all of the possible output

values for input 0 to 255 are pre-calculated, and a lookup

table is constructed for each box. Consequently, the

processing time of the S-box is insignificant; each output

value can be accessed directly from the input address.

Because of this lookup method, we cannot exploit the

SIMD unit for the S-box operations. The SIMD unit can

only process the same single instruction for different data,

so it cannot access different indices of the lookup table at

one time.

In addition to the six SPEs, we also use PPE to

encrypt data in order to fully utilize the computing power

CELL 프로세서를 이용한 SEED 블록 암호화 알고리즘의 효율적인 병렬화 기법 279

0.95 1.05

1.93

1.02

2.56 2.59

0

0.5

1

1.5

2

2.5

3

AMD
4-Core

Intel
4-Core

Intel
8-Core

PPE
2-thread

Cell BE
ALL SIMD

Cell BE
Hybrid

Th
ro

ug
hp

ut
(G

bp
s)

(a)

0.15
0.17
0.19
0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35

Ti
m

e
(s

)

Workload ratio

All SIMD Hybrid

(b)

(Fig. 5) Performance results and platform information

of Cell BE. Since the PPE controls execution of the SPEs

as well as has different computing power compared to

the SPEs, we need to adjust and balance the portion of

workload assigned to the PPE.

As the PPE has a dual-threaded and dual-issue

architecture, the PPE runs two threads whereas the SPEs

runs one thread on each core. To consider the workload

balancing, we have set workload ratio as the amount on

a PPE thread over the amount on a SPE thread.

To utilize the workload balancing, we fully consider

the architectural design of the PPE. Although the PPE

has a SIMD execution unit, it is physically near to the

main memory and has cache different from the SPEs. As

the existence of the cache, the encoding/decoding with

the scalar execution unit can provide performance gain.

Since the SIMD execution unit needs a memory

alignment overhead and has large granularity, which is 4

× 128 bits for every operation, rather than that of scalar

execution unit which is 128 bits for every operation, the

workload ratio can be controlled more in details with

using scalar execution unit. Therefore, we propose a new

method which uses different execution unit for the PPE

and the SPEs.

We labeled an approach that uses the SIMD units on

both cores as ALL SIMD and the method that does not

use the SIMD unit on PPE as Hybrid. The Hybrid

implementation provide efficient workload balancing and it

achieves high-performance for the encoding/decoding speed.

4. Experimental results and performance analysis

To demonstrate correctness of the proposed idea, we

have tested it thoroughly on Cell BE with diverse test

vectors. With -O3 optimizations applied on the GCC

compiler, we achieved a throughput of 2.59 Gbps for both

SEED encoding and decoding operations. We achieved the

peak performance with the workload ratio of 0.38 and the

ratio is obtained in a heuristic method.

In (Figure 5)-(a), we have parallelized and compared

the performance on the Cell BE to the results

implemented on various other multi-core platforms. The

parallelization on the homogeneous processors equally

divides entire works to the each core on the processor

and we have fully parallelized it by the Pthread library.

As seen in the (Figure 5)-(a), the experiments were

performed on various desktop computing environments,

including an AMD quad-core phenom-X4 9550, an Intel

quad-core core 2 Quad Q9400 and 8-core Xeon E5440 ×

2 system. Furthermore, the PPE 2-thread configuration

has been tested and compared, which only uses the PPE

for the encoding/decoding operations. Several data were

input and encrypted in parallel to exploit the multi-core

environment, using all the available cores to their fullest.

The Cell BE implementation, which is depicted as Cell

BE Hybrid, shows approximately speed up of 1.34 and

2.54 in total computation performance compared to the

Intel 8-core and PPE core system, respectively.

(Figure 5)-(b) is a result about adjusting workload

distributed to PPE and adopting encoding/decoding

methods. We achieve higher performance and higher

workload ratio by using selectively applying encoding /

decoding methods in the Hybrid approach.

The encoding/decoding time increases in (Figure 5)-(b)

is caused by the unbalanced workload distribution. If the

workload is unbalanced, the core that has more

computation needs to wait until the other cores finish

their works. Therefore, the unbalanced workload

distribution causes severe performance degradation. As a

result, the ALL SIMD method shows decreased

performance after the optimal workload ratio and the

Hybrid method also shows increase of encoding/decoding

time after its optimal workload ratio.

For the ALL SIMD and the Hybrid methods, we can

achieve the workload ratio up to 0.38 with the Hybrid

implementation while ALL SIMD achieves 0.23.

Performance without adjusting workload of ALL SIMD

280 정보처리학회논문지 A 제17-A권 제6호(2010.12)

and Hybrid shows 0.74 Gbps and 1.21 Gbps respectively.

With workload balancing, we can achieve more than

twice better performance.

In the general purpose processor system, the cache

contributes a great deal in achieving high performance, as

it reduces the memory accesses which require a long

access time. The six SPEs in Cell BE have no cache

nevertheless show a speed up of 1.34 in encoding

performance compared to the best 8-core system. In

addition, it shows speed up of 2.54 compared to the result

of using only the PPE. This indicates that the

architecture of Cell BE is more suitable for such

computational encryption processes than general

multi-core systems. Accordingly, using the Cell BE

implementation can fulfill the needs of fast encryption

speed required in high-performance network systems,

where current available desktop can only provide limited

performance.

5. Conclusion

In this paper, we have shown a high-performance

parallelized implementation of the SEED block cipher

algorithm on the Cell BE processor. The proposed design

is fully parallelized and provides 2.59 Gbps performance.

This is a sufficient performance rate to prevent the

SEED block cipher from being a bottleneck in

high-performance network systems, where the encoding

and decoding speed of network security algorithms is

crucial. As SEED is a widely used algorithm in Korea, a

nation where high-speed network transmission rates are

widely provided, we are confident to claim that our Cell

BE implementation would be of great use.

References

[1] NBS, “Data Encryption Standard,” FIPS, pub. 46, U.S,

DEPARTMENT OF COMMERCE/National Institute of

Standards and Technology, Jan. 1997.

[2] NBS, “Announcing the ADVANCED ENCRYPTION

STANDARD(AES), FIPS, pub. 197, U.S, DEPARTMENT

OF COMMERCE/National Institute of Standards and

Technology, Nov. 2001.

[3] S. Miyaguchi, “The FEAL cipher family,” proceedings of the

10 th Annual International Crpytology Conference on

Advances in Crpytology, p.627-638, August 11-15, 1990.

[4] H. Xie, L. Zhou, and L. Bhuyan, “Architectural Analysis of

Cryptographic Applications for Network Processors,” IEEE

First Workshop on Network Processors, 2002.

[5] J.A. Kahle, M.N. et al. “Introduction to the Cell

multiprocessor.” IBM J. RES. & DEV, Vol.49, No.4 / 5,

pp.589-604, 2005.

[6] Dac C. pham. et al. “Overview of the Architecture, Circuit

Design, and Physical Implementation of a First-Generation

Cell Processor.” Solid-State Circuits, Vol.41, No.1,

pp.179-196, 2006.

[7] A. Arevalo, R. M. Matinata, M. R. Pandian, E. Peri, K. Ruby,

F. Thomas, and C. Almond, Programming the Cell

Broadband Engine Architecture: Examples and Best

Practic, Vervante, 2008.

[8] Korea Information Security Agency, A Design and Analysis

of 128-bit Symmetric Block Cipher(SEED), 1999. 4.

[9] Bruce Schneier, Applied Cryptography, Wiley, 1996.

김 덕 호

e-mail : nautes87@yonsei.ac.kr

2010년 연세대학교 전기전자공학과(학사)

2010년 연세대학교 전기전자공학과(석사과정)

관심분야 :컴퓨터 시스템, 병렬 프로세싱,

Cell 프로세서 등

이 재 영

e-mail : jaeyoung.yi@lge.com

2008년 연세대학교 수학과 /컴퓨터과학과

(학사)

2010년 연세대학교 전기전자공학과(석사)

현재 LG전자 CTO System IC 연구원

관심분야 :임베디드 시스템, 컴퓨터 아키

텍쳐 등

노 원 우

e-mail: wro@yonsei.ac.kr

1996년 연세대학교 전기공학과(학사)

1999년 University of Southern California

(석사)

2004년 University of Southern California

(공학박사)

2003년～2004년 Apple Computer Inc. 인턴 연구원

2004년～2007년 California State University 전기 및 컴퓨터공

학과 조교수

2006년～2007년 ARM Inc. 소프트웨어 엔지니어

2007년～현 재 연세대학교 전기전자공학과 조교수

관심분야 :고성능 마이크로프로세서 디자인, 컴파일러 최적화,

임베디드 시스템 디자인 등

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

