• Title/Summary/Keyword: Cell Biomass

Search Result 451, Processing Time 0.028 seconds

Improved guggulsterone production from sugars, precursors, and morphactin in cell cultures of Commiphora wightii grown in shake flasks and a bioreactor

  • Mathur, Meeta;Ramawat, K.G.
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.133-136
    • /
    • 2008
  • Cell cultures of Commiphora wightii (Arnott.) Bhandari were grown in shake flasks and a bioreactor and an increase in guggulsterone accumulation up to $18{\mu}g\;l^{-1}$ was recorded in cells grown in the production medium containing a combination of sucrose:glucose (4% total), precursors (phenylalanine, pyruvic acid, xylose, and sodium acetate), morphactin, and 2iP. A yield of $10g\;l^{-1}$ biomass and ${\sim}200{\mu}g\;l^{-1}$ guggulsterone was recorded in a 3-l flask and in a 2-l stirred tank bioreactor compared with 6.6 g biomass and $67{\mu}g\;l^{-1}$ guggulsterone in 250-ml flasks. Increased vessel size was correlated with increased biomass and guggulsterone accumulation. 2iP alone was not effective for biomass and guggulsterone accumulation in cell cultures of C. wightii.

Integrated Phytoplankton Data of the west Pacific Sector of the Southern Ocean: $140-148 ^{\circ}E$ transect

  • Hak Young Lee;In
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • A total of 94 taxa were identified from the Southern Ocean, 140-148 。E and 40-53。S, as an early austral summer phytoplankton. They were 53 diatoms, 37 dinoflagellates, 2 silicoflagellates, 1 prymnesiophyte, and 1 coccolithophorid. Integrated cell numbers of nanoplankton dominated microphytoplankton from 8 stations, especially from Subantarctic zone, but integrated biomass was lower than microphytoplankton. Integrated cell numbers of diatoms dominated dinoflagellates, coccolithophorids, and pnrnnesiophyte, but integrated biomass of microphytoplankton were dependent to the biomass of dinoflagellates except north of the Subtropical convergence zone and south of the Antractic convergence sone. Phytoplankton community changed across the fronts and 3 different communities were observed. Fronts seem to influence on the phytoplankton community from the west Pacific Sector of the Southern Ocean.

  • PDF

Production of Biomass and Bioactive Compounds from Cell Suspension Cultures of Eurycoma longifolia in Balloon Type Bubble Bioreactors

  • Shim, Kyu-Man;Murthy, Hosakatte Niranjana;Park, So-Young;Rusli, Ibrahim;Paek, Kee-Yoeup
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.251-258
    • /
    • 2015
  • Eurycoma longifolia is an important rare medicinal plant that contains valuable bioactive compounds. In the present study, cell suspension culture of E. longifolia was established for the production of biomass and phenolic compounds. Various medium parameters, such as concentration of auxin, salt strength of the medium, and sucrose and nitrogen concentrations, were optimized for the production of biomass at the flask-scale level. Full strength Murashige and Skoog (MS) medium supplemented with $3.0mg{\cdot}L^{-1}$ naphthaleneacetic acid (NAA), 3% (w/v) sucrose, 0:60 $NH{_4}^+:NO{_3}^-$ was found suitable for biomass accumulation. Based on the optimized flask-scale parameters, cell suspension cultures were established in balloon-type bubble bioreactors, and bioprocess parameters such as inoculum density and aeration rate were optimized. Inoculum density of $50g{\cdot}L^{-1}$ and increasing aeration rate from 0.05 to 0.3 vvm, with increases every 7 days, were suitable for the accumulation of both biomass and phenolic compounds. With the optimized conditions, $14.70g{\cdot}L^{-1}$ dry biomass, $10.33mg{\cdot}g^{-1}$ DW of phenolics and $3.89mg{\cdot}g^{-1}$ DW of flavonoids could be achieved. Phenolics isolated from the cell biomass showed optimal free radical scavenging activity.

Linear Correlation between Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia coli Fermentations in a Pilot-Scale Pressurized Bioreactor

  • Knabben, Ingo;Regestein, Lars;Schauf, Julia;Steinbusch, Sven;Buchs, Jochen
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.204-211
    • /
    • 2011
  • To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.

Electrical Energy Production Using Biomass (바이오매스 기반 전기에너지 생산기술 동향 분석)

  • Jongseo Lee;Sang-Soo Han;Doyeun Kim;JuHyun Kim;Sangjin Park
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

Effect of Initial condition on the Characteristics of Ehtanol Fermentation (발효 초기조건이 에탄올 발효 특성치에 미치는 영향)

  • 민경호;김휘동;허병기
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.479-484
    • /
    • 1995
  • The effect of initial cell concentration on the characteristics of ethanol fermentation was investigated in the batch fermentation of Saccharomyces cerevisiae ATCC 24858. The characteristics were investigated in the range of 60 to 230 g/l of the initial sugar concentrations and 0.5 to 85 g/l of the initial cell concentrations. When the initial cell concentrations were 27 g/l for 60 g/l of the initial sugar and 85 g/l for 230 g/l, the fermentation time required for the complete consumption of the initial sugar was one hour, respectively. The ethanol productivity increased with the initial cell concentration so that, in the case of 100 g/l of initial sugar, the productivity rose up to 55 g/l/hr at 55 g/l of the initial cell concentration. The specific growth rate decreased according to the increase in the initial biomass concentration and finally became zero at around 25 g/l of the cell concentration regardless of the initial sugar concentration. The specific ethanol production rate was constant as 1.02 g/l/hr up to 150 g/l of the initial sugar. However, the rates decreased sharply with the augmentation of concentration of the initial sugar above 160 g/l. The overall ethanol yield represented a constant value, 0.475 g/g irrespective of the initial cell and sugar concentrations. The overall biomass yietd showed a trend to diminish in values with the biomass and ultimately to reach zero more than 25 g/l of the initial cell concentration.

  • PDF

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Physiological Functionality and Enzyme Activity of Biomass from Pichia anomala Grown on Ginseng-Steaming Effluent

  • Kim, Na-Mi;So, Seung-Ho;Lee, Sung-Gae;Song, Jung-Eun;Seo, Dong-Soo;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.148-151
    • /
    • 2008
  • A novel biomass was prepared from Pichia anomala KCCM 11473, which grew well in ginseng-steaming effluent (GSE), and its physiological functionalities and enzyme activities were determined. When the strain was cultured in the GSE (pH 6.0) at 30$^{\circ}C$ for 48 h, 1.6 mg of biomass per ml-cultures was produced. The cell-free extract of the biomass showed high antihypertensive angiotensin I-converting enzyme inhibitory activity of 72.0% and anticholesteromia HMG-CoA reductase inhibitory activity of 46.5%. The cell-free extract also showed 13.0 U per ml and 8.5 U per ml of neutral protease activity and alkaline protease, respectively.