DOI QR코드

DOI QR Code

Linear Correlation between Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia coli Fermentations in a Pilot-Scale Pressurized Bioreactor

  • Received : 2010.04.20
  • Accepted : 2010.11.01
  • Published : 2011.02.28

Abstract

To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.

Keywords

References

  1. Anderlei, T., W. Zang, M. Papaspyrou, and J. Buchs. 2004. Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem. Eng. J. 17: 187-194. https://doi.org/10.1016/S1369-703X(03)00181-5
  2. Andersson, L., L. Strandberg, and S. O. Enfors. 1996. Cell segregation and lysis have profound effects on the growth of Escherichia coli in high cell density fed-batch cultures. Biotechnol. Prog. 12: 190-195. https://doi.org/10.1021/bp950069o
  3. Arnoux, A. S., L. Preziosi-Belloy, G. Esteban, P. Teissier, and C. Ghommidh. 2005. Lactic acid bacteria biomass monitoring in highly conductive media by permittivity measurements. Biotechnol. Lett. 27: 1551-1557. https://doi.org/10.1007/s10529-005-1781-2
  4. Babaeipour, V., S. A. Shojaosadati, S. M. Robatjazi, R. Khalilzadeh, and N. Maghsoudi. 2006. Over-production of human interferon-g by HCDC of recombinant Escherichia coli. Process Biochem. 42: 112-117.
  5. Cannizzaro, C., R. Gügerli, I. Marison, and U. von Stockar. 2003. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol. Bioeng. 84: 597-610. https://doi.org/10.1002/bit.10809
  6. De Anda, R., A. R. Lara, V. Hernandez, V. Hernandez-Montalvo, G. Gosset, F. Bolivar, and O. T. Ramirez. 2006. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab. Eng. 8: 281-290. https://doi.org/10.1016/j.ymben.2006.01.002
  7. Ferreira, A. P., L. M. Vieira, J. P. Cardoso, and J. C. Menezes. 2005. Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 116: 403-409. https://doi.org/10.1016/j.jbiotec.2004.12.006
  8. Fyferling, M., J. Uribelarrea, G. Goma, and C. Molina-Jouve. 2008. Oxygen transfer in intensive microbial culture. Bioprocess Biosyst. Eng. 31: 595-604. https://doi.org/10.1007/s00449-008-0208-6
  9. Gregory, M. E. and C. Tuner. 1993. Open-loop control of specific growth rate in fed-batch cultures of recombinant E. coli. Biotechnol. Techn. 7: 889-894. https://doi.org/10.1007/BF00156368
  10. Hoffmann, F., M. Schmidt, and U. Rinas. 2000. Simple technique for simultaneous on-line estimation of biomass and acetate from base consumption and conductivity measurements in high-cell density cultures of Escherichia coli. Biotechnol. Bioeng. 70: 358-361. https://doi.org/10.1002/1097-0290(20001105)70:3<358::AID-BIT14>3.0.CO;2-T
  11. Kaiser, C., T. Pototzki, A. Ellert, and R. Luttmann. 2008. Applications of PAT-process analytical technology in recombinant protein processes with Escherichia coli. Eng. Life Sci. 8: 132-138. https://doi.org/10.1002/elsc.200720232
  12. Knoll, A., S. Bartsch, B. Husemann, P. Engel, K. Schroer, B. Ribeiro, C. Stockmann, J. Seletzky, and J. Buchs. 2007. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J. Biotechnol. 132: 167-179. https://doi.org/10.1016/j.jbiotec.2007.06.010
  13. Knoll, A., B. Mayer, H. Tscherrig, and J. Buchs. 2005. The oxygen mass transfer, carbon dioxide inhibition, heat removal, and the energy and cost efficiencies of high pressure fermentation. Adv. Biochem. Eng. Biotechnol. 92: 77-99.
  14. Lara, A. R., L. Caspeta, G. Gosset, F. Bolivar, and O. T. Ramirez. 2008. Utility of a Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: An alternative to fed-batch cultures. Biotechnol. Bioeng. 99: 893-901. https://doi.org/10.1002/bit.21664
  15. Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98-105. https://doi.org/10.1016/0167-7799(96)80930-9
  16. Maier, B., C. Dietrich, and J. Buchs. 2001. Correct application of the sulphite oxidation methology of measuring the volumetric mass transfer coefficient kLa under non-pressurized and pressurized conditions. Food Bioprod. Process. 79: 107-113. https://doi.org/10.1205/096030801750286267
  17. Maier, U., M. Loosen, and J. Buchs. 2004. Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem. Eng. J. 17: 155-167. https://doi.org/10.1016/S1369-703X(03)00174-8
  18. Markx, G. H. and C. L. Davey. 1999. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enz. Microb. Technol. 25: 161-171. https://doi.org/10.1016/S0141-0229(99)00008-3
  19. Mas, S., F. Ossard, and C. Ghommidh. 2001. On-line determination of flocculating Saccharomyces cerevisiae concentration and growth rate using a capacitance probe. Biotechnol. Lett. 23: 1125-1129. https://doi.org/10.1023/A:1010563917374
  20. Maskow, T., A. Röllich, I. Fetzer, J. Ackermann, and H. Harms. 2008. On-line monitoring of lipid storage in yeasts using impedance spectroscopy. J. Biotechnol. 135: 64-70. https://doi.org/10.1016/j.jbiotec.2008.02.014
  21. Maskow, T., A. Rollich, I. Fetzer, J. Yao, and H. Harms. 2008. Observation of non-linear biomass-capacitance correlations: Reasons and implications for bioprocess control Biosens. Bioelect. 24: 123-128. https://doi.org/10.1016/j.bios.2008.03.024
  22. Neves, A. A., D. A. Pereira, L. M. Vieira, and J. C. Menezes. 2000. Real time monitoring of biomass concentration in Streptomyces cla6 uligerus cultivations with industrial media using a capacitance probe. J. Biotechnol. 84: 45-52. https://doi.org/10.1016/S0168-1656(00)00325-4
  23. Noll, T. and M. Biselli. 1998. Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J. Biotechnol. 63: 187-198. https://doi.org/10.1016/S0168-1656(98)00080-7
  24. Sanden, A. M., I. Prytz, I. Tubulekas, C. Forberg, H. Le, A. Hektor, et al. 2002. Limiting factors in Escherichia coli fedbatch production of recombinant proteins. Biotechnol. Bioeng. 81: 158-166.
  25. Schmidt, M., E. Viaplana, F. Hoffmann, S. Marten, A. Villaverde, and U. Rinas. 1999. Secretion-dependent proteolysis of heterologous protein by recombinant Escherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. Biotechnol. Bioeng. 66: 61-67. https://doi.org/10.1002/(SICI)1097-0290(1999)66:1<61::AID-BIT6>3.0.CO;2-G
  26. Shiloach, J. and R. Fass. 2005. Growing E. coli to high cell density - A historical perspective on method development. Biotechnol. Adv. 23: 345-357. https://doi.org/10.1016/j.biotechadv.2005.04.004
  27. Xiong, Z. Q., M. J. Guo, Y. X. Guo, J. Chu, Y. P. Zhuang, and S. L. Zhang. 2008. Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J. Biosci. Bioeng. 105: 409-413. https://doi.org/10.1263/jbb.105.409

Cited by

  1. Non‐invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry vol.110, pp.5, 2011, https://doi.org/10.1002/bit.24815
  2. Real-time estimation of biomass and specific growth rate in physiologically variable recombinant fed-batch processes vol.36, pp.9, 2013, https://doi.org/10.1007/s00449-012-0848-4
  3. Using small molecules as a new challenge to redirect metabolic pathway vol.4, pp.5, 2011, https://doi.org/10.1007/s13205-013-0185-6
  4. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate vol.179, pp.6, 2016, https://doi.org/10.1007/s12010-016-2053-4
  5. Application of In-Situ and Soft-Sensors for Estimation of Recombinant P. pastoris GS115 Biomass Concentration: A Case Analysis of HBcAg (Mut+) and HBsAg (MutS) Production Processes under Varying Condi vol.21, pp.4, 2021, https://doi.org/10.3390/s21041268
  6. Monitoring and control of E. coli cell integrity vol.329, pp.None, 2011, https://doi.org/10.1016/j.jbiotec.2021.01.009