• Title/Summary/Keyword: Ceiling Construction Method

Search Result 48, Processing Time 0.023 seconds

Joint installation of ceiling facilities in the subway system (지하철 천장시설물 공동설치 방안)

  • Lee, Pil-Sin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1953-1959
    • /
    • 2011
  • Subway stations have a characteristic that the facilities in the ceiling should be checked, replaced and expanded frequently. The new installation of supports (steel anchors) for new facilities and workers moving-around in the ceiling result in the damage in the ceiling finish material and concrete structure which also result in construction cost increase. In addition, the noise, vibration and dust generated during the work harm the station environment. There are civil complaints on these which give difficulty to ceiling works. Accordingly, this study suggests a ceiling frame construction method that considers the convenience, economy and efficiency of ceiling work by improving the support installation method for facilities in ceiling.

  • PDF

Deriving Critical Management Factors based on Case Studies of Multi-trade MEP Ceiling Rack Prefabrication (복합공종 MEP 천정 선조립 공법 사례조사를 통한 단계별 중점관리사항 도출)

  • Lee, Dongmin;Jang, Sejun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.76-77
    • /
    • 2015
  • In construction industry, management of construction factors such as cost, schedule, quality and safety is the most important key for delivering successful projects. According to the Smart Market Report, a magazine specialized in construction industry, recently said 'Off-site Prefabrication' is a significant trend related with construction productivity in global construction industry. It is a kind of practice shift from On-site to Off-site. A lot of general contractors in oversea have been using 'Multi-trade MEP Ceiling Rack Prefabrication' method for getting benefits such as decreased cost & schedule and increased labor productivity. Thus, in this paper, critical management factors at each phase from design to installation was derived by researching case studies. Forwardly, it can be a basic guideline for applying Multi-trade MEP Ceiling Rack Prefabrication in Korea construction industry.

  • PDF

Development of ceiling construction methods reduced floor impact sound (바닥충격음 저감이 가능한 천장 공법 개발)

  • Kim, kyungho;Kim, sunghoon;Ryu, jongkwan;Lee, jongin;Kim, yongmin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.203-207
    • /
    • 2014
  • According to the advanced study, Increase of ceiling air space could cause increase of floor impact sound by air-spring effect. So in this research, we studied the increase of floor impact sound caused by ceiling air space in apartment buildings. At first, we evaluated the change of floor impact noise in the condition of with or without ceiling air-space. And then we installed perforated ceiling systems and glass wool at ceiling area. we expected that perforated ceiling systems could prevent air-spring effect in ceiling space. As a result, ceiling air space caused increasement of floor heavy impact noise about 2~4dB. But perforated ceiling & sound-absorbing materials system could give us reduction of heavy floor impact noise about 3dB. So this systems could be a good alternative to obey national regulations, because it can reduce heavy impact noise additional to floating floor systems.

  • PDF

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

A Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 연구)

  • Ki, No-Gab;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1038-1042
    • /
    • 2007
  • The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames + Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

  • PDF

An Experimental Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 실험적 연구)

  • Baek, Eun-Sun
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.95-100
    • /
    • 2007
  • In apartment houses, said to be similar to a typical housing form, every household share the walls and floors. Many problems inevitably accompany such as an arrangement, as noise and vibration are shared among households. When investigating the percentage of apartment resident's dissatisfaction with housing environments, discontent due to noise ranks the highest. Among many different kinds of noises, noise such as floor crashing sounds show the highest indication rate in the residents' comparison of discontent. Therefore, it is the practice of insulating against noises such as floor crashing sounds that improves the apartment house environments. The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames +Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

A Study on the Reduction Characteristics of Floor Impact Sound Insulation Due to the Ceiling Frame Structures in Apartment Houses (공동주택의 천장틀구조 변화에 따른 바닥충격음 차음특성 연구)

  • 정환욱;기노갑;송민정;김선우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.573-580
    • /
    • 2002
  • Generally the ceiling frame of apartment house is made of wood. But the wood frame has several problems due to the natural properties such as distortion by shrink, low fire resistance and material loss in the construction field. And it has some defections in sound insulation performance. Therefore it is necessary to develop a new method that can be used as a ceiling frame. This study aims to analyze and to compare the sound insulation characteristics against the floor impact sound between wood ceiling frame and M-bar frame which is made of steel. The results of this study are like these. M-bar frame is more effective than wood ceiling frame in sound insulation. And sound absorbing or sound insulation materials which can be Put on gypsum board are helpful to improve floor impact sound insulation performance.

Effect of Working Posture on the Productivity and Perceived Discomfort while Drilling on the Ceiling

  • Yoon, Tae-Lim;Yoon, Jangwhon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Objective: The purpose of this study was to compare the performance of drilling on the ceiling in three different postures (standing, standing on the ladder and supine on the height adjusted board) and the subjective responses of perceived discomfort after the drilling. Background: Overhead work has been identified as a major occupational risk factor and has been a main research subject. Method: Ten young participants drilled 20 holes at the pre-marked places on the ceiling in three different postures. The drilling duration, resting and drilling heart rate were measured. The levels of perceived discomfort at neck, shoulder, elbow, hand and overall body were asked at the end of each task. Results: The working posture affected the heart rate after the drilling. Perceived discomfort in the neck decreased significantly in supine compared to drilling on the ladder. Conclusion: The results of this study suggest that drilling in supine can be an alternative way to reduce the drilling heart rate and the level of perceived discomfort in the neck without sacrificing the productivity. Application: The results of this study would be considered when drilling on the ceiling is required in construction workers.

Tests of integrated ceilings and the construction of simulation models

  • Lyu, Zhilun;Sakaguchi, Masakazu;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.381-395
    • /
    • 2019
  • This paper proposes a new approach to model the screw joints of integrated ceilings via the finite element method (FEM). The simulation models consist of the beam elements. The screw joints used in the main bars and cross bars and in the W bars and cross bars are assumed to be rotation springs. The stiffness of the rotation springs is defined according to the technical standards proposed by the National Institute for Land and Infrastructure Management of Japan. By comparing the results of the sheer tests and the simulation models, the effectiveness and efficiency of the simulation models proposed in this paper are verified. This paper indicates the possibility that the seismic performance of suspended ceilings can be confirmed directly via beam element models using FEM if the stiffnesses of the screw joints of the ceiling substrates are appropriately defined. Because cross-sectional shapes, physical properties, and other variables of the ceiling substrates can be easily changed in the models, it is expected that suspended ceiling manufactures will be able to design and confirm the seismic performance of suspended ceilings with different cross-sectional shapes or materials via computers, instead of spending large amounts of time and money on shake table tests.

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF