• Title/Summary/Keyword: Cedrela sinensis extract

Search Result 15, Processing Time 0.021 seconds

Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons (과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과)

  • Lee, Soon-Bok;Kim, Ju-Yeon;Cho, Soon-Ock;Ban, Ju-Yeon;Ju, Hyun-Soo;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

Physiological Activities of Extracts of Cedrela sinensis leaves (참죽나무 잎 추출물의 생리활성)

  • Shin, Hee-June;Jeon, Young-Jin;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • The purpose of this study was to confirm the content of total polyphenol, antioxidative and immune activities of the extracts of Cedrela sinensis leaf. The content of total polyphenol of water extracts ranged from 46.5-59.6 mg/100 g, which was higher than other extracts using organic solvents such as EtOAc, $CH_2Cl_2$ and $C_6H_{14}$. The antioxidant activity of the water and organic solvents extracts showed 6-33% in terms of 2,2-diphenyl-picryl-hydrazyl (DPPH) scavenging activity. To analyze the immuno-stimulation activity of C. sinensis leaf extract, we investigated the effect of the extracts on NO synthesis which is important in host defense against bacterial infection. Hot water extracts significantly increased NO generation by RAW 264.7, macrophage cell line, while organic solvent extract has no significant effect on NO production. To further analyzed the anti-inflammatory effect of the extracts, we investigated the effects of the extracts on lipopolysaccharide(LPS)-induced NO generation. Organic solvent extracts of C. sinensis leaves showed strong inhibitory effect on NO production in LPS-stimulated RAW 264.7 cells. These results suggest that C. sinensis leaf extract may represent a useful immune stimulating agent and anti-inflammatory agent.

Antioxidant Constituents from the Leaves of Cedrela sinensis A. Juss

  • Lee, Ik-Soo;Wei, Chun-Hua;Thoung, Phuong Thien;Song, Kyung-Sik;Seong, Yeon-Hee;Bae, Ki-Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.267-272
    • /
    • 2006
  • Phytochemical study on the EtOAc fraction from the MeOH extract of the leaves of Cedrela sinensis led to the isolation of five known phenolic compounds (1-5), whose structures were identified as (+)-catechin (1), $kaempferol-3-0-{\alpha}- L-rhamnopyranoside$ (2), quercetin (3), $quercetin-3-O-{\alpha}-L-rhamnopyranoside$ (4), and $quercetin-3-O-{\beta}-D-glucopyranoside$ (5), respectively, by comparing their spectral $(uv,\;JR,\;IH\;and\;^{13}C-NMR,\;and\;ESI-MS)$ and physicochemical data with those reported in the literature. Among the isolated compounds (1-5), compounds 1 and 3-5 exhibited significant DPPH radical scavenging effects with $IC{_50}$ values ranging from $21.3{\pm}1.4\;to\;38.1{\pm}3.2 {\mu}M$ as well as superoxide anion radical scavenging effects with $IC{_50}$ values ranging from $9.4{\pm}0.7\;to\;21.2{\pm}3.6 {\mu}M$. Furthermore, compounds 1 and 3-5 also exhibited considerable inhibitory effects on LDL peroxidation induced by either $CU^{2+}$ or AAPH with $IC{_50}$ values ranging from $1.4{\pm}0.4\;to\;11.9{\pm}1.4\;{\mu}M$. These results indicated that flavonoids are the major constituents of C. sinensis and considered to be antioxidant principles of this plant.

Aldose reductase inhibitory activity of the methanol extracts from Korean folk plants (민속식물의 알도즈 환원효소 억제작용)

  • Kim, Hye-Min;Han, Saem;Choi, Kyung;Ku, Ja-Jung;Park, Kwang-Woo;Cho, Eun-Ju;Lee, Sang-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • To search for the aldose reductase (AR) inhibitors from Korean folk plants, the inhibition of rat lens AR in vitro using the methanol (MeOH) extracts from Korean folk plants was investigated. Among fifty four Korean folk plants tested, the MeOH extract of Cedrela sinensis showed highest inhibition of AR ($IC_{50}$ value, 2.52 ${\mu}g/ml$). The plant C. sinensis has a possibility of new natural resources for the development of AR inhibitor for the prevention of diabetic complications.

High Throughput Screening on Angiogenesis Inhibitor and Promoter of Medicinal Plants using a Protein Microarray Chip

  • In, Dong-Su;Lee, Min-Su;Bang, Kyong-Hwan;Kim, Ok-Tae;Hyun, Dong-Yun;Ahn, Young-Sup;Cha, Seon-Woo;Seong, Nak-Sul;Kim, Eung-Youn;Shin, Yoo-Soo;Kang, In-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • The effects of angiogenesis inhibitor from the extract libraries of Korean and Chinese medicinal plants were investigated using a protein microarray chip. Protein chip was constructed by immobilization of integrin ${\alpha}_5{\beta}_1$ on protein chip base plates and employed far screening active extracts that inhibit the integrin-fibronectin interaction from the extract libraries. The 100 extracts of medicinal plants were obtained from extract bank of National Institute of Crop Science, RDA. The 14 extracts among 100 extract libraries were shown efficient inhibition activity for the interaction between integrin-fibronectin. The medicinal plants of 14 extracts were Vitex negundo var. incisa (Lam.) C.B. Clarke, Epimedium koreanum Nakai, Cedrela sinensis A. Juss, Ipomea aquatica Forsk, Schisandra chinensis Baill, Pulsatilla koreana Nakai, Paeonia lactiflora Pall. var.hortensis Makino, Oenothera odorata, Allium chinense, Allium victorialis var. platyphyllum MAKINO, Polygonatum odoratum Druce var. pluriflorum Ohwi, Hosta lancifolia, Agrimonia pilosa L. var. japonica Nakai and Potentilla chinensis SER. The Paeonia lactiflora, Oenothera, and Agrimonia pilosa from these 14 extracts libraries were shown strong inhibition activity of integrin ${\alpha}_5{\beta}_1$.