• Title/Summary/Keyword: CdTe 박막

Search Result 143, Processing Time 0.023 seconds

Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials (In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황)

  • Shin, Seung-Wook;Han, Jun-Hee;Gang, Myeng-Gil;Yun, Jae-Ho;Lee, Jeong-Yong;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

The Study of $SiO_2$, $Si_3N_4$ passivation layers grown by PECVD for the indiumantimonide photodetector

  • Lee, Jae-Yeol;Kim, Jeong-Seop;Yang, Chang-Jae;Park, Se-Hun;Yun, Ui-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Indium Antimonide(InSb)는 $3{\sim}5\;{\mu}m$대 적외선 감지영역에서 기존 HgCdTe(MCT)를 대체할 물질로 각광받고 있다. 1970년대부터군사적 용도로 미국, 이스라엘 등 일부 선진국에서 연구되기 시작했으며,이온주입, MOCVD, MBE 등 다양한 공정을 통해 제작되어 왔다. InSb 적외선 감지소자는 $3{\sim}5{\mu}m$대에서 HgCdTe와 성능은 대등한데 반해, 기판의 대면적화와 저렴한 가격, 우주공간 및 야전에서 소자 동작의안정성 등으로 InSb적외선 감지기는 냉각형 고성능 적외선 감지영역에서 HgCdTe를 대체해 가고 있다. 하지만 InSb는 77 K에서 0.225eV의 작은 밴드갭을 갖고 있기 때문에 누설전류로 인한 성능저하가 고질적인문제로 대두되었고, 이를 해결하기 위한 고품질 절연막 연구가 InSb적외선 수광 소자 연구의 주요이슈 중 하나가 되어왔다. 그 동안 PECVD, photo-CVD, anodic oxidation 등의 공정을 이용하여 $SiO_2$, $Si_3N_4$, 양극산화막(anodic oxide) 등 다양한 절연막에 대한 연구가 진행되었고[1,2], 절연막과 반도체 사이 계면에서의 열확산을 억제하여 계면트랩밀도를 최소화하기 위한 공정개발이 이루어졌다[3]. 하지만 InSb 적외선 감지기술은 국방 및 우주개발의 핵심기술중 하나로 그 기술의 이전이 엄격히 통제되고 있으며, 현재도 미국과 이스라엘, 일본, 영국 등 일부 선진국 만이 기술을 확보하고 있고, 국내의 경우 연구가 매우 취약한 실정이다. 따라서 본 연구에서는 InSb 적외선 감지기의 암전류를 제어하기 위한 낮은 계면트랩밀도를 갖는 절연막 증착 공정을 찾고자 하였다. 본 연구에서는 n형 (100) InSb 기판 ($n=0.2{\sim}0.85{\times}10^{15}cm^{-3}$ @ 77K)에 PECVD를 이용하여 $SiO_2$, $Si_3N_4$ 등을 증착하고 절연막으로서 이들의 특성을 비교 분석하였다. $SiO_2$는 160, 200, $240^{\circ}C$에서 $Si_3N_4$는 200, $300^{\circ}C$에서 증착하였다. Atomic Force Microscopy(AFM) 사진으로 확인한 결과, 모든 샘플에서표면거칠기가 ~2 nm의 평탄한 박막을 얻을 수 있었다. Capacitance-Voltage 측정(77K)을 통해 절연막 특성을 평가하였다. $SiO_2$$Si_3N_4$ 모두에서 온도가 증가할수록 벌크트랩밀도가 감소하는 경향을 볼 수 있었는데, 이는 고온에서 증착할 수록 박막 내의 결함이 감소했음을 의미한다. 반면계면트랩밀도는 온도가 증가함에 따라, 1011 eV-1cm-2 대에서 $10^{12}eV^{-1}cm^{-2}$ 대로 증가하였는데, 이는 고온에서 증착할 수 록 InSb 표면에서의 결함은 증가하였음을의미한다. 암전류에 큰 영향을 주는 것은 계면트랩밀도 이므로, $SiO_2$$Si_3N_4$ 모두 $200^{\circ}C$이하의 저온에서 증착시켜야 함을 확인할 수 있었다.

  • PDF

The Electroluminescence Properties of Sq-doped Alq3 Organic Thin Films (Sq가 도핑된 Alq3 유기 박막의 발광 특성)

  • 박종관;김형권;김종택;육재호
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.1-6
    • /
    • 2000
  • We prepared organic light-emitting-diodes (LEDs) with a squarylium(Sq)-doped aluminum quinoline(Alq3) emission layer by the vapor deposition method. We discussed their electro-luminescence(EL) and electrical properties. The EL from Sq had a peak wavelength of 670nm and a half-width of 30nm. Only the EL from So(purely red) could be observed at the doping concentration of over 15mol%, but the luminance were low (0.21cd/$m^2$, 0.1cd/$m^2$) and EL efficiency was under the $10^{-2}$W. Although Sq molecules seemed to act as trap site in Alq3 molecules, they acted as carrier drafts site at doping concentration of over 5mol%.

  • PDF

Growth and Properties of $Cd_{1-x}$$Zn_x$/S Films Prepared by Chemical Bath Deposition for Photovoltaic Devices (Chemical Bath Depsoition법에 의한 $Cd_{1-x}$$Zn_x$/S 박막의 제조 및 특성에 관한 연구)

  • 송우창;이재형;김정호;박용관;양계준;유영식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.104-110
    • /
    • 2001
  • Structural, optical and electrical properties of Cd$_{1-x}$ Zn$_{x}$S films deposited by chemical bath deposition(CBD), which is a very attractive method for low-cost and large-area solar cells, are presented. Especially, in order to control more effectively the zinc component of the films, zinc acetate, which was used as the zinc source, was added in the reaction solution after preheating the reaction solution and the pH of the reaction solution decreased with increasing the concentration of zinc acetate. The films prepared after preheating and pH control had larger zinc component and higher optical band gap. The crystal structures of Cd$_{1-x}$ Zn$_{x}$S films was a wurtzite type with a preferential orientation of the (002) plane and the lattice constants of the films changed from the value for CdS to those for ZnS with increasing the mole ratio of the zinc acetate. The minimum lattice mismatch between Cd$_{1-x}$ Zn$_{x}$S and CdTe were 2.7% at the mole ratio of (ZnAc$_2$)/(CdAc$_2$+ZnAc$_2$)=0.4. As the more zinc substituted for Cd in the films, the optical transmittance improved, while the absorption edge shifted toward a shorterwavelength. the photoconductivity of the films was higher than the dark conductivity, while the ratio of those increased with increasing the mole ratio of zinc acetate. acetate.

  • PDF

표면분석장비를 이용한 CIGS 정량분석

  • Kim, Seon-Hui;Yun, Jeong-Hyeon;Jang, Yun-Jeong;Lee, Yeon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.279-279
    • /
    • 2013
  • 차세대 태양전지로 주목받는 화합물 박막 태양전지(CIGS, CdTe, etc)는 광흡수계수가 매우 높아 얇은 두께의 광흡수층으로도 빛을 효과적으로 흡수할 수 있으므로 광흡수층의 역할이 매우 중요하며 이에 대한 정확한 정보와 이해는 필수적이다. 특히 GIGS 박막 태양전지의 정량 및 각 원소의 깊이 방향의 분포를 분석하는 것은 박막형 태양전지 개발에 크게 기여한다 [1,2]. 본 실험에서는 조성비를 알고 있는 균질한 CIGS박막을 표준시료로 사용하여 ICP-MS로 측정하여 평균농도를 구한 뒤 TOF-SIMS, D-SIMS, Auger Electron Spectroscopy (AES) 로 깊이 방향 분석 결과를 통해 상대감도(RSF)를 계산한 후 각 원소의 농도로 변환하여 정량분석 결과를 얻었다. 일반적으로 손쉽게 정량적인 정보를 얻는 AES에 비해 정량성이 떨어지는 TOF-SIMS와 D-SIMS는 스퍼터링시 사용되는 Cs 빔과 시료 내 금속과의 클러스터 이온(GaCs+와 InCs+)의 깊이 방향 조성을 이용하면 매트릭스 효과를 배제할 수 있어서 좀 더 정확한 정량 분석이 가능하므로 시료내 금속과 Cs 이 결합된 클러스터 이온의 깊이 방향 조성을 측정하여 각원소의 농도를 계산하였고 스퍼터링 에너지를 포함한 실험 변수에 따른 재현성 및 정량성의 차이를 비교분석하였다. 또한 CIGS층에 불순물로 들어 있는 미량원소들의 깊이 분포도도 함께 관찰하였다.

  • PDF

The Research Status and Prospects of CZT(S,Se) Solar Cells (CZT(S,Se) 태양전지 연구 현황 및 전망)

  • Kang, Jin-Kyu;Son, Dae-Ho;Sim, Jun-Hyoung;Hwang, Dae-Kue;Sung, Shi-Joon;Yang, Kee-Jeong;Kim, Dae-Hwan
    • Prospectives of Industrial Chemistry
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2017
  • 태양전지는 온실 가스 감축에 효과가 큰 기후 변화 대응 기술이다. 현재 상업화에 성공한 실리콘 태양전지의 뒤를 이어 박막 태양전지, 페로브스카이트 태양전지 등 차세대 태양전지가 가격과 효율 등을 극복하기 위하여 매우 많이 연구되고 있다. CZT(S,Se) 박막 태양전지는 차세대 태양전지의 유력 후보군인 CIGS, CdTe, 페로브스카이트 태양전지 등에 비해 범용 무독성 원소를 광흡수층으로 사용한다는 장점을 가지고 있지만 아직까지는 이들보다 효율이 낮아 상용화하기에는 많은 문제를 가지고 있다. CZT(S,Se) 박막태양전지의 기본적인 물성, 공정 등을 알아보고 고효율을 달성하는 방법에 대하여 알아보고자 한다.

안티모니 셀레나이드 태양전지의 연구 개발 동향: 에너지 밴드 정렬 최적화

  • ;;Wang Yazi
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.9 no.2
    • /
    • pp.18-28
    • /
    • 2023
  • 지구상에 풍부하며 저독성 소재인 안티모니 셀레나이드(Sb2Se3)는 재료가 갖는 우수한 광전자적 특성과 장기 내구성으로 차세대 태양전지 소자로 크게 주목 받고 있다. 또한, 비교적 짧은 연구기간 동안 빠른 성장 속도를 보여줬으며, 2014년 2.26%에서 8년의 연구기간 동안 약 5배인 2022년 10.57%를 달성하였다. 하지만, 여전히 기존의 칼코지나이드계 박막 태양전지인 CdTe(22.1%) 및 Cu(In,Ga)Se2(23.35%)가 달성한 효율에 비해 낮은 변환 효율을 보이고 있으며, 이는 계면에서 발생하는 캐리어 재결합으로 인한 개방전압 손실 문제가 주 원인으로 대두되고 있다. 따라서, Sb2Se3 광 흡수층에 인접한 전자 및 정공 수송층 사이에 적절한 밴드 정렬을 구축하여 캐리어 재결합 손실을 줄이는 것이 고효율 Sb2Se3 태양전지를 구현하기 위한 핵심 전략 중 하나이다. 본 원고에서는 Sb2Se3 광 흡수층의 기본적인 특성과 Sb2Se3 태양전지의 최근 연구 성과에 대해 간략하게 설명하고자 하며, 특히 전자 및 정공 수송층 적용을 통한 에너지 밴드 정렬 최적화에 관련된 내용을 중점적으로 소개하고자 한다. 또한, Sb2Se3 박막 태양전지 성능의 병목 현상을 극복하기 위한 잠재적인 연구 방향에 대해서도 논하고자 한다.

  • PDF

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.