• Title/Summary/Keyword: CdS thin films

Search Result 178, Processing Time 0.023 seconds

Crystal Growth Sensor Development of II-VI Compound Semiconductor : CdS (II-VI족 화합물 반도체의 결정성장 및 센서 개발에 관한 연구)

  • D.I. Yang;Y.J. Shin;S.Y. Lim;Y.D. Choi
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.126-133
    • /
    • 1992
  • This study deals with the crystal growth and the optical characteristics of CdS thin films activatedby silver. CdS:Ag thin films were deposited by using an electron beam evaporation(EBE) technique in vacuumof 1.5X 10-'torr, voltage of 4 kV, current of 2.5 mA and substrate temperature of 250$^{\circ}$C CdS:Ag photoconductivefilms prepared by EBE method show high photoconductivity after annealing at about 550"c for 0.5 h in air andAr gas.The grain size of CdS:Ag thin films annealed in Ar atmosphere (1 atm) was grown over 1 ym and the thicknessof the films is 4-5 pm. The analysis of X-ray diffraction patterns shows that the crystal structures are hexagonal.The diffraction line by (00.2) plane can only be observed, indicating that c-axis of hexagonal grows preferentiallyperpendicular to the substrate. The profiles of photoluminescence spectra of CdS:Ag films show Gaussian typecurves at room temperature, the maximum peak spectral sensitivity of CdS:Ag is located at the wavelength of520 nm.We annealed CdS:Ag thin films in air and Ar vapor in order to make the CdS photoconductors having theintensive photocurrent, the broad distribution of the photocurrent spectrum and the large value of the ratioof the photocurrent (pc) to the dark current(dc). We found that CdS:Ag thin films annealed in air atmospherewas the best one.air atmosphere was the best one.

  • PDF

Electrical and Optical Properties of CdS Thin Films Deposited by CSVT Method (CSVT법으로 제조된 CdS박막의 전기적 및 광학적 특성)

  • Park, Ki-Cheol;Shim, Ho-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.414-422
    • /
    • 1997
  • CdS thin films with low resistivity and adequate transmittance in the visible region for the window of CdS/CdTe hetero junction solar cel1 were prepared by close spaced vapor transport(CSVT) method. The electrical and optical properties of the CdS thin films were investigated in terms of the deposition conditions, such as the substrate temperature, the working pressure, and the source temperature. The substrate temperature, the working pressure, and the source temperature for the optimum deposition of the CdS thin films were $300^{\circ}C$, 100mTorr, and $730^{\circ}C$, respectively. The resistivity and the transmittance of the CdS thin films deposited under this condition were about $7.21{\times}10^{3}{\Omega}cm$ and over 65%, respectively. The crystallinity, the resistivity, and optical band gap were improved greatly compared to the CdS thin films deposited by general high vacuum evaporation.

  • PDF

The Effect of Thermal Annealing and Growth of Cdln2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 Cdln2S4 단결정 박막 성장과 열처리 효과)

  • 홍광준;이관교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.923-932
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for CdIn$\_$2/S$\_$4/ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdIn$\_$2/S$\_$4/ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were 630 $\^{C}$ and 420 $\^{C}$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of CdIn$\_$2/S$\_$4/ single crystal thin films measured from Hall effect by van der Pauw method are 9.01$\times$10$\^$16/ cm$\^$-3/ and 219 ㎠/V$.$s at 293 K, respectively. From the optical absorption measurement, the temperature dependence of energy band gap on CdIn$\_$2/S$\_$4/ single crystal thin films was found to be Eg(T) = 2.7116 eV - (7.74 $\times$ 10$\^$-4/ eV) T$\^$2//(T+434). After the as-grown CdIn$\_$2/S$\_$4/ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of CdIn$\_$2/S$\_$4/ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of V$\_$cd/, V$\_$s/, Cd$\_$int/ and S$\_$int/ obtained by PL measurements were classified as donors or accepters type. And we concluded that the heat-treatment in the S-atmosphere converted CdIn$\_$2/S$\_$4/ single crystal thin films to an optical p-type. Also, we confirmed that In in CdIn$\_$2/S$\_$4/GaAs did not from the native defects because In in CdIn$\_$2/S$\_$4/ single crystal thin films existed in the form of stable bonds.

A Study on the Electrical and Optical Properties of CdS Thin Films Deposited with Different Conditions for Solar Cell Applications (태양전지용 CdS 박막의 제조 조건에 따른 전기적 광학적 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.620-628
    • /
    • 2008
  • Cadmium sulphide (CdS) thin film, which is used as a window layer of heterojunction solar cell, on the glass substrate was deposited by vacuum evaporation. Effects of deposition conditions such as the source and substrate temperature on electrical and optical properties of CdS films was investigated. As the source temperature was increased, the deposition rate of CdS films was increased. In addition, the optical transmittance and the electrical resistivity of CdS films were decreased as the source temperature was increased. This results were attributed to the increase of excess Cd amount in the film. The crystal structure of CdS films exhibited the hexagonal phase with preferential orientation of the (002) plane. As the substrate temperature was increased, the crystal structure of CdS films was improved and the resistivity of the films was increased due to the decrease of excess Cd in film.

Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique (RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 CdCl2 열처리 효과)

  • Choi, Su-Young;Chun, Seung-Ju;Jung, Young-Hun;Lee, Seung-Hun;Bae, Soo-Hyun;Tark, Sung-Ju;Kim, Ji-Hyun;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.497-501
    • /
    • 2011
  • The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the $CdCl_2$ heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a $CdCl_2$ heat treatment was carried out. After the $CdCl_2$ heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 ${\Omega}cm$, and the transmittance in the visible region increased from 64% to 74%.

Photo-electronic Properties of Cd(Cu)S/CdS Thin Films and Diodes Prepared by CBD

  • Cho, Doo-Hee;Kim, Kyong-Am;Song, Gi-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this paper, CdS/Cd(Cu)S thin films and diodes were manufactured via a chemical bath deposition (CBD) process, and the effects of $NH_4Cl$ and TEA(triethylamine) on the properties of the films were examined. The addition of $NH_4Cl$ significantly increased the thickness of the CdS and Cd(Cu)S films, however, the addition of TEA decreased the thickness in both cases slightly. The addition of $NH_4Cl$ along with TEA increased the film thickness more effectively compared to the addition of only $NH_4Cl$. The thickness of the CdS film prepared from an aqueous solution of 0.007 M $CdSO_4$, 1.3 M $NH_4OH$, 0.03 M $SC(NH_2)_2$, 0.0001 M TEA and 0.03 M $NH_4Cl$ was 310 nm. Dark resistivity of the CdS film was $1.2{\times}10^3\;{\Omega}cm$ and the photo resistivity with $500\;W/cm^2$ irradiation of white light was $20{\Omega}cm$. The Cd(Cu)S/CdS thin film diodes prepared by CBD showed good rectifying characteristics.

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Electrical and Optical Properties of In-doped CdS Films Prepared by Vacuum Evaporation (진공증착법으로 제조한 CdS:In 박막의 전기 및 광학적 특성)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.101-104
    • /
    • 1992
  • In-doped CdS thin films have been deposited at 150$^{\circ}C$ by simultaneous thermal evaporation of CdS and In. Deposition rate and film thickness were 8A/sec and about 1um, respectively. Indium doping concentration of films varied as Indium source temperature from 500$^{\circ}C$ to 700˚. Properties of In-CdS films have been investigatied by measurements of electrical resistivity, Hall effect, X-ray diffraction and optical trasmission spectra. The conductivity of these films was always n-type. The resistivity, carrier concentration, mobility and optical band gap dependence on Indium source temperature are reported. Carrier concentration and mobility of In-CdS films increased with increasing Indium source temperature: then they decreased. The variation of the optical band gap of In-CdS thin films are related to carrier concentration.

  • PDF

Electrodeposition of Ternary CdZnS Semiconductor Thin Films Using a S-Modified Polycrystalline Au Electrode

  • Ham, Sun-Young;Cho, Se-Jin;Lee, Ung-Ki;Jeon, So-Yeon;Shin, Ji-Cheol;Myung, No-Seung;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.262-264
    • /
    • 2007
  • This paper describes a two-step approach for the electrochemical deposition of CdZnS thin films on the polycrystalline Au electrode. Initially, an Au substrate is electrochemically modified with a sulfur layer. In the second step, the layer is electroreduced to $S^{2-}$ in the electrolyte dosed with the requisite amount of $Cd^{2+}$ and $Zn^{2+}$ ions to generate CdZnS films in situ. This approach was validated using a combination of linear sweep voltammetry and electrochemical quartz crystal microgravimetry. Thus synthesized CdZnS thin films have different composition depending on the composition of electrolytes. CdZnS thin films are characterized by energy-dispersive X-ray analysis and Raman spectroscopy.