• Title/Summary/Keyword: Cavity shape

Search Result 434, Processing Time 0.029 seconds

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

A Study of Partial Discharge RF Sensor for wide band with Cavity (캐버티를 갖는 광대역 부분방전 RF 센서 연구)

  • Rhee, Seung-Yeop;Cho, Ki-Ryang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.227-232
    • /
    • 2021
  • In this paper, the narrow-band characteristic, which is the disadvantage of the existing the PD sensor, was improved by transforming the sensor shape into a trapezoidal shape to improve the characteristics of the dipole-shaped conventional PD(Patial Discharge) sensor. In addition, by applying a cavity structure, which is a structure that can fundamentally block the electromagnetic wave signal from the outside as it is used for an external sensor, it is a partial discharge sensor that takes advantage of the structural advantages of low cost and convenience of installation. As a result of the experiment, it was shown that there is a broadband characteristic of about 70.5%(1.59~3.32GHz) at the center frequency of 2.45GHz, and the broadband characteristic was confirmed.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING (5급와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun;Cho, Byeong-Hoon;Rim, Young-Il
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

  • PDF

Development of Thermal Imprint System for Net-Shape Manufacturing of Multi-layer Ceramic Structure (세라믹 정형 가공을 위한 성형기 개발)

  • Park, C.K.;Rhim, S.H.;Hong, J.P.;Lee, J.K.;Yoon, S.M.;Ko, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.401-404
    • /
    • 2008
  • In the present investigation, a high precision thermal imprint system for micro ceramic products was developed and the net-shape manufacturing of multi-layer ceramic reflector for LED (Light Emitting Diode) was conducted with a precision metal die. Workpiece used in the present investigation were the multi-layer laminated ceramic sheets with pre-punched holes. The cavity with arbitrary angle was formed on the circular and rectangular holes of the ceramic sheets. During the imprinting process, the ambient temperature of the imprint system was kept over the transition temperature of the ceramic sheet and then rapidly cooled. The results in this paper show that the present method can be successfully applied to the fabrication of very small size hole array for ceramic reflector in a one step operation.

  • PDF

Sound Absorption Effects in a Rectangular Cavity According to the Surface Impedance of Wall (벽면의 임피던스변화에 따른 폐공간 내부에서의 음장특성 분석)

  • 오재응;김상헌;도중석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.687-694
    • /
    • 1997
  • The anisotropy and shape of distributed piezopolymer actuator have advantages over isotropic piezo ceramic materials, since these features of PVDF can be utilized as another design variable in control application. This study is interested in the reduction of sound transmission through elastic plate into interior space by using the PVDF actuator. The plate-cavity system is adopted as a test problem. The vibration of composite plate and the sound fields through plate are analyzed by using the coupled finite element and boundary element method. Some numerical simulations are performed on sound transmission through elastic plates. To investigate the effects of anisotropy and shape of distributed piezopolymer actuator, various kinds of distributed PVDF actuators are applied in sound control simulation for isotropic and anisotropic plates. The PVDF actuators applied are different from each other in their shapes and laminate angles. The results of control simulation show that the control effectiveness of distributed PYDF actuator can be enhanced by using the coupling between shape of actuator and vibration modes of structure and the anisotropy of piezoelectric properties of PVDF.

  • PDF

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

Three Dimensional Stress Analysis of a Dental Implant with Central Cavity (중공을 가지는 치과용 임플란트의 3차원 응력해석)

  • Kim, Jin-Gon;Lee, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2197-2202
    • /
    • 2011
  • In this study, we propose a new short dental implant and investigate its bio-mechanical characteristics by using three dimensional finite element analyses. The proposed dental implant has the central cavity which can be integrated with the core of cancellous bone remained by trepanning drill. We take the Bicon short implant as a reference model for studying the effects according to the shape of cavity. The parametric finite element model using ANSYS APDL has been built to determine which length, diameter and thread of central cavity would be effective to dissipate stress. The reduction of undesirable stress in adjacent bone which can suppress bone defects and the eventual failure of implants. The numerical results shows that the cavity of well-determined shape has the beneficial effects on reducing the bone absorption in cancellous bone.

A Study on the Acoustic and Cavity-Tone in a Perforated Through-Tube Muffler (다공관 배기 소음기의 음향 모드와 공동음에 관한 연구)

  • Kwon, Y.P;Lee, D.H.;Oh, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • The objective of this study is do obtain the relationship between the acoustic mode and cavity tone induced in a perforated tube exhaust muffler. First, the modal frequency for the axisymmetric radial mode and the mode shape have been computed using the impedance model for the perforated tube. Then, experiment has been perfonned for the onset frequencies of the cavity tone for various design parameters and through-flow. The theoretically obtained modal frequencies are well consistent with the measured onset frequencies of the cavity tone, showing that the cavity tone is induced by the axisymmetric radial mode. And it is found that the modal frequency of a perforated tube muffler is much lower than that of a simple expansion chamber.

  • PDF

A Potential-Based Panel Method for the Analysis of a Two-Dimensional Partially-Cavitating Hydrofoil

  • Lee, Chang-Sup
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.15-25
    • /
    • 1993
  • A potential-based panel method is presented for the analysis of a partially-cavltatlng two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces. It is shown that the source plays an Important role in positioning the cavity surface through an iterative process. The cavity closure consition is found very effective in generating the cavity shape. Upon convergence, the method predicts the cavitation nurser, together with the lift, the drag and the surface pressure distribution, for a given cavity length. Systematic convergence tests shows that the present numerical method is fast and stable. The present computations show a good agreement with the previously computed and measured results.

  • PDF

Numerical study on supercavitating flow in free stream with regular waves

  • Li, Da;Lyu, Xujian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.799-809
    • /
    • 2020
  • In this study, the supercavitating flow of a high-velocity moving body near air-water surface is calculated and analyzed based on a commercial CFD software ANSYS Fluent. The effect of regular wave parameters including both wave height and wavelength on the cavitating flow and force characteristics of a body at different velocities is investigated. It is found that the cavity shape, lift coefficient and drag coefficient of the body vary periodically with wave fluctuation, and the variation period is basically consistent with wave period. When the wavelength is much greater than the cavity length, the effect of wave on supercavitation is the alternating effect of axial compression and radial compression. However, when the wavelength varies around the cavity length, the cavity often crosses two adjacent troughs and is compressed periodically by the two wave troughs. With the variation of wavelength, the average area of cavity shows a different trend with the change of wave height.