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Abstract

A potential-based panel method is presented for the analysis of a partially-cavitating
two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on

the foil and cavity surfaces. It is shown that the source plays an important role in

positioning the cavity surface through an iterative process. The cavity closure consition is

found very effective in generating the cavity shape. Upon convergence, the method

predicts the cavitation numer, together with the lift, the drag and the surface pressure dis-

tribution, for a given cavity length. Systematic convergence tests shows that the present

numerical method is fast and stable. The present computations show a good agreement with

the previously computed and measured results.

1. Introduction

As the loading on blades of a marine propeller
increases, cavitation plays an important role in
the unsteady hull forces and also causes severe
noise and vibration problems at the stern. In or-
der to control these problems at the stern of a
ship and also to design a propeller with a suf-
ficient but not excessive cavitation margin, it is
desirable to predict the extent and behavior of
the cavity on the surface of the propeller blades
with an improved accuracy.

Traditional methods predicting the cavitation
phenomenon around a marine propeller are based
mostly on the linearized lifting surface theory

(see, for example, Lee[1]). Upon linearization,
the flow around the leading edge of a blade
results in a singular pressure peak, which
becomes inevitably the source of inaccurate
overprediction of the cavity extent on the blades
of a marine propeller. To overcome this drawback
of the Ifting-surface theory, a surface panel
method is now emerging where the singularities
such as sources and normal dipoles are distributed
on the true blade surface rather than on the mean
-line surface(Lee[2], Yang & Jessup [3], Hess &
Valarezo [4]). The pressure distribution near the
leading edge may now be predicted fairly accu-
rately, and hence a reliable cavity prediction is
foreseeable in the near future.
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The aim of this paper, with an ultimate goal of
application to marine propellers, is to develop a
technique to solve the problems of partially-
cavitating flows around two-dimensional
hydrofoils of various profiles. Both the linear and
nonlinear theories to solve the cavity flow around
a two-dimensional section have been successful.
A good review on the publications has recently
been reported by Uhlman [5]. Due to its flexi-
bility to deal with complicated blade geometry,
the surface singularity distribution method draws
a more attention nowadays, Recently Uhlman [5]
solved the cavity flow problem by a boundary-in-
tegral method where he distributed the
vorticities on the foil and cavity surfaces.
Uhlman’s nonlinear theory could predict various
guantities of interest in cavity flow very success-
fully. One disadvantage in his theory is that the
velocity-based formulation requires a large num-
ber of elements and also a large number of
iterations to reach to the converged values,
which is not favorable in three dimensional
extensions.

The present theory is also a boundary-integral
method, but employs the sources and normal
dipoles to represent the foil and cavity surfaces.

The formulation takes the velocity potential as
the basic unknown function, unlike the velocity-
based formulation of Uhlman, and therefore the
present theory is one order less singular than
Uhlman’s. It may therefore be expected that the
number of minimum required elements and
iterations for reasonable solutions would be less in
the present method compared with Uhlman’s.

Thi~ naver dsscribes the boundary-value prob-
lem arouir » cavitating hydrofoil and the numeri-
cal method together with the results of extensive
convergence tests, Comparisons of the numerical
rosults with other theories and experiments are

<130 8 0Wn hore.
2. Statement of boundary - value problem

I+ us consider the steady, irrotational flow of

an inviscid, incompressible unbounded fluid past a
two-dimensional cavitating hydrofoil. A Cartesian
coordinate system is chosen as shown in Fig. 1
with the leading edge of the foil at the origin and
the trailing edge on the positive x-axis. The uni-
form oncoming flow is inclined by an angle of at-
tack «. The total velocity, ¥, may be expressed
in terms of the total velocity potential, ®, which
is defined using the oncoming velocity, U, the
position vector, x, and the perturbation potential,
@, as follows :

v=vo (n
where
O=U. x+¢ (2)

The conservation of mass applied to the poten-
tial flow gives the Laplace equation as a
governing equation, that is,

V 20=0, throughout the fluid (3)

The flow can be uniquely defined by imposing
the boundary condition on the boundary surfaces
as follows :

1. Quiescence condition at infinity :

vVo-U,, at infinity (4)

2. Flow tangency condition on the pody surtace:

i y=—z%=0, on the body surface S, (5)

Cavity trailing end
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Fig. 1 Definition sketch of a cavitating hydrofoil



where N is the unit vector normal to the
houndary, defined positive when pointing
into the fluid region.

3. Kutta condition .

| V., |<oo, atthe trailing edge (6)
where T.E. stands for the trailing edge.

For the partially-cavitating flow, the Kutta
condition requires that the magnitude of the velo-
city is finite at the trailing edge as in the
subcavitating flow.

With the presence of cavity on the hydrofoil,
we have to apply the kinematic and dynamic
boundary conditions on the cavity surface, the
cavity closure condition at the cavity trailing
end, and the cavity detachment condition,

4. Kinematic condition on the cavity surface :

DF
o =0

on the cavity surface S. (7)

where Flx,y) is a function expressing the
cavity surface.

5. Dynamic condition on the cavity surface :

p=p. on the cavity surface S (8)

where p, is the vapor pressure inside the
cavity.
6. Cavity closure condition :

T<(x..) =0, at the cavity trailing end (9)
where T9(x) denotes the cavity thickness func-
tion and x.. denotes the x-coordinate of the cav-
ity trailing end.

According to Wu [61[7], the condition on
which the cavity departs from the solid body sur-
face is either fixed or free, depending on whether
the point that the cavity flow detaches from the
body (a) at a fixed point as in the trailing edge
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and the sharp leading edge, or (b) at some points
on a smooth body, which is not known a priori, as
for example in the case of flow around a thick
round leading edge. The Wu’s nonlinear theory
states that the curvature of the streamline at the
junction point of the body and cavity surfaces
should be either infinite or finite for the fixed or
free detachment points, respectively.

The detachment point at the leading edge of
the thick hydrofoil section is not known in ad-
vance. The exact location is in fact governed by
the real fluid effect, which is beyond the scope of
the present study. We assumed here, to simplify
the analysis, that the cavity starts from the lead-
ing edge of the foil, leaving the sensitivity of this
assumption to be studied in the future, The cav-
ity detachment at the sharp corner is really fixed
and causes no ambiguity at the sharp leading
edge.

Using the Bernoulli equation, we get relations
between the surface pressure, p, the tangential
speed on the foil-cavity surface, V.|, the cavi-

tation number, ¢, and the pressure coefficient,

C,, as follows :

=52t —(-'5—"»2.
ek ‘
on foil /cavity surface (10)
GEEI.‘;Q;= -C,. =(~[~K'I -1,
3. U U.
on the cavity surface (11)

where U.=|U.|, p is the density of water, p is

the ambient pressure and |VF.| is the tangential
speed on the cavity surface.

According to (10) and (11), the dynamic con-
dition on the cavity surface (8) can be replaced
by the kinematic condition so that the tangential
speed on the cavity surface, |V.| is constant,

that is

|V | =const. (12)
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In this paper, we are interested in the lift, L,
the drag, D, and the moment, M, acting on the
hydrofoil in cavitating condition and also the cav-
ity volume, Vol (or, the cavity section area in the
present two-dimensional problem). The non-
dimensional coefficients of these quantities
are defined following the expression of Uhlman
51

The lift coefficient, C., is given as

Y . U
CL=—1——‘—“ Ct-—ds (13)

7,0(]2/6' 5p U.

= D __ s U
CD—%PUZ,C §SBC,,n U’ds (14)

and the moment coefficient, C,, about the origin
(that is, the leading edge of the hydrofoil), is

co=gM—=- §  caxhds (15)

?pU{C

where ¢ denotes the chordlength and ¥ denotes a
vector from the origin to a point on the foil sur-
face : 1is the unit tangential vector defined in the
clockwise direction along the foil surface as
shown in Fig. 1.

The cavity volume, Vol, is calculated from the
cavity thickness function,

T (x), as
Vol= [ T () dx (16)

where [, is the cavity length defined along the

x-axis as shown in Fig. 1.

3. Singularity distribution method

From Green’s theorem, we may derive an ex-
pression for the potential in the flow field by
distributing the normal dipoles and sources on the
body surface, or alternatively by distributing only
either the normal dipoles or sources as shown by

Lamb[8]. From the literature (see, for example,
Moran[9]), the lifting airfoil problem can be
treated successfully by adopting only the normal
dipoles on the foil surface and on the wake sheet.
However, in the present cavity flow problem in
addition to the normal dipoles, we introduce the
sources to represent the presence of the cavity
on the cavitating portion of the foil. We expect
that the sources will serve as a normal flux gen-
erator, which may be integrated in the
streamwise direction to form the cavity shape, in
a similar manner as in the thickness problem of
the thin wing theory.

The total potential in the fluid region may now
be expressed as follows :

S LS 27!’

YT

®Y)=U, - x+ [ #(8) ﬁ log R(x:£) dS

+

[ 5 ﬂz(—ﬁl log R(x:&) dS

v

) )
+ [S Z ;‘ IOg R(Eé) ds

(17)
where
g(¢)  ==source strength
wl&) =dipole strength

x(x,y,z)=field point where induced potentials are
calculated

(& 7.0) =point where singularities are located

R(x:&) =distance between points x and ¢

=V = =) =0

‘=normal derivative with respect to point ¢

and also S, S. and S, denote the body surface,

the cavity surface and the wake sheet surface,
respectively, and pu, denotes the dipole strength

on the wake sheet surface, S,, which is negative

of the jump of potentials across the wake sheet
surface. The direction of the dipole in the wake
sheet surface, S., is defined positive when

pointing upward.



For dipole-only distribution, we may convert
the flow tangency condition (5), a® /an==0, in the
fluid side of the boundary into the zero total po-
tential condition, for the fictitious internal flow,
defined in Equation.

& (=0 (18)

where the superscript denotes that the velocity
potential is to be calculated on the interior to the
foil surface (see, for example, Breslin et al{10]).
If we apply this conversion across the dipole and
source sheet, we will inevitably introduce errors
in the flow tangency boundary condition or
nonzero normal flux due to the influence of the
sources. Indeed, this normal flux on the current
dipole and source sheet is in essence the thick-
ness correction function necessary in searching
the cavity shape. If this error term vanishes
through iterations, due to the vanishing source
strengths, the kinematic condition on the cavity
surface will then be satisfied by the alternative
form of the kinematic boundary condition for the
internal flow defined in Equation(18).

Equation (17) may now be reformed and ap-
plied to a point on and inside the foil-cavity sur-
face to meet the alternative form of the
kinematic boundary condition (18) as

o (x=0=U, -;c+1‘(2i)

of ‘u‘%)“ °— log Rix:) dS

an,

+ f . —qé(% log R(x:&) dS

N L) .
+ J o log R(x:¢) dS (19)

The dipole in the wake, yu,, is the negative of the
potential jump at the trailing edge. For a steady
lifting flow, the negative of yu, is equivalent to
the circulation around the hydrofoil and constant
along the wake surface, S..

The Kutta condition (6) is replaced by
Morino’s{11] condition for the present potential-
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based method as

sy = —(AD), (20)

where (A®), is the potential jump across the
wake sheet surface, S., which extends to down-

stream infinity from the trailing edge. Due to the
characteristics of singularities, the governing
equation (3), and the quiescence condition (4),
will automatically be satisfied. Since U, - x in
(19) is known, the equation (19) becomes an in-
tegral equation for the unknown strengths of
source and normal dipole distributions.

Equation (12), derived from the dynamic
boundary condition on the cavity surface, implies
that the velocity potential on the cavity surface
has a linearity, so that we can set

q>~=a>.v,+|g(|j: ds (21)

where the superscript, u, represents the upper
surface of the cavity, and the subscript cdp
denotes the cavity detachment point and |/
denotes the girth length along the cavity surface
from the cavity detachment point to the point
where the potential is calculated. Thus, @
denotes the velocity potentials on the upper sur-
face of the cavity. @, becomes the velocity

potentials at the upper cavity detachment point
near the leading edge. For the partially-
cavitating flow with positive angle of attack, only
the velocity potentials on the upper surface of
the cavity, @ and ®.,, are considered.

Equation (21) relates the tangential speed on
the cavity surface to the velocity potential,
which is really a useful form, since the constant
speed on the cavity surface |V.| is linearly re-
lated to the unknown variables ® or u.

The source strength representing the thickness
of the cavity or, more correctly, the function to
relocate the current cavity surface position in an
iterative process may be related, in a linearized
sense, to the product of the oncoming velocity
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and the first derivative of cavity thickness cor-

rection function, t¢ as in the case of thin wing

theory :
-y =g 4t
g=V,=U, dx (22)
t :T(")_T?,fn (23)

where V, is the normal component of the total

velocity on the cavity surface, which is expected
to be nonzero when the tangency boundary con-
dition (5) is replaced by the zero total potential
condition (18), and the subscript (i) denotes the
iteration index. Equation (23) shows that t¢ is the
difference of the cavity surfaces between two
successive iterations. Note that the source
strength, ¢(&), vanishes upon convergence.

Since the cavity thickness T is to satisfy the
closure condition (9), the thickness correction
function ¢ should also satisfy the same condition.
Integrating (22), we get expressions for the cav-
ity thickness correcticn and an alternative form
of the cavity closure condition as follows :

r=[ -4 (24)

x

1) = f ‘““Tj— dx (25)

0 x

Once equation (19) is solved, the cavity source
strengths, ¢(¢&), are known, and hence the new
cavity shape may be obtained by correcting the
ordinate of the cavity surface at the current iter-
ation, as schematically shown in Fig. 2.

Fig. 2 Definition sketch of cavity surface position at
each iteration

4. Numerical implementation of the problem

4.1 Discrete representation of hydrofoil and cavity
surfaces

For numerical computation, the foil and cavity
surfaces are replaced by a set of straight-line
segments of finite length as shown in Fig. 3. The
flow near the leading edge varies more rapidly
than any other region around the foil, and hence
the surface panel size should be smaller in this re-
gion. We adopted, to represent the x-coordinate
of the panel boundary x* as follows :

Fig. 3 Discretization of foil and cavity surfaces

¥ =51~ cosh), 0<O<n (26)

where the lower and upper limits of 8 corresponds
to the leading edge and trailing edge, respect-
ively.

The x-coordinate of the cavity, x°, is the same
as the coordinate of the panel boundary above the
upper surface of the foil, that is, x"=x". The
vertical coordinate of the hydrofoil, »® is
computed by using the offset of the hydrofoil sec-
tion, and that of the cavity, »°, is obtained as a
part of the solution, Fig. 3 shows the typical
discretized foil and cavity surfaces in a partially-
cavitating condition.

4.2 Approximation of integral equation
Assume that the strengths of sources and nor-
mal dipoles are constant on each panel, that is



W& =p, on panel j =1 N"+1 (27)
g(&)=gq,, on panel kk =1, N’ (28)

where N°+1 and N’ denote the number of panels
on which normal dipoles and sources are
distributed, respectively. Since the source panels
always coincide with the dipole panels, the total
number of panels to represent the foil-cavity sys-
tem will be N°. We will not count the dipole for
the wake sheet surface just for convenience,
since it is always represented as a function of the
other dipole strengths.

The control point on the foil-cavity surface, x’,
where the boundary conditions are to be satisfied,
is positioned at the center of each element, such
that

¥ =gl tx) i=lo N (29)

where x, may either be the panel boundary coor-

dinate of the hydrofoil, x"=(x% ", or that of

the cavity, x“ =0, »").

Distributing the normal dipoles on the surfaces
of both hydrofoil and cavity and the sources on
the cavity surface, we can express the total vel-

ocity potential at the ith control point as follows :

ST T
(D: —0 Q' X +,§: 2” ljn
NS qk
I oy
e
o B (30)
where
B=|= Jifi=j

3 s
-1 58, Lifi#]
[( o, og Rlx;¢) dS if i#]

h

%= [ log R(x:£) dS

3

a
e = ——] e
B L onlo8 R(x;£.) dS
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where the subscripts / and / denote the ith con-
trol point and the jth singularity point, respect-
ively, and the subscript w represents the wake
surface,

An approximate expression for the Kutta con-
dition (6) is obtained, following the Morino’s con-
dition (20), as

no= “(A‘D)n _(D/_(D\“: _(#’-_lu"“) (31)

where the subscripts 1 and A" link the values to
the lower and upper surface panels, respectively,
adjacent to the trailing edge.

Following (21) which is derived from the dy-
namic boundary condition, the total velocity po-
tential at the control point of the jth source panel
along the cavity surface in the streamwise direc-
tion can be expressed as follows :

o=@, + V.| T As (32)

where @', denotes the total velocity potential on
the cavity detachment points at the leading edge
of the hydrofoil, and As; denotes the length of

the kth source panel along the upper cavity sur-

face.

Since &,=@ —p=—u=—pu, the above re-
lation becomes

=g, = WL (33)
where

/= 'Z As,

Equation (33) shows that strengths of normal
dipoles on the cavity surface can be expressed as
a linear function of the dipole strengths at the
cavity detachment point and the tangential speed
on the cavity surface, |).|;that is, there 1s no

unknown dipole strength on the cavity surface.
Upon discretization, the cavity closure con-
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dition (25) for the partially-cavitating flow will
be recast as

NS

Z, 9 As=0 (34)

The total number of unknowns is A°+1, which
consists of (N°+A% unknown dipoles, (N
sources and |V.|. To determine the unknowns we
need the same number of equations, which may
be formed by applying (30) to N° control points
defined in (29) and by applying the closure con-
dition (34).

4.3 Discussion on solution procedure

Upon formation of the linear system of al-
gebraic equations, we may need to check the well
-posedness of the present numerical formulation,
Unlike the solution technique for the problem of
the non-cavitating flow with a proven record, it
is likely that the present method may be affected
by the presence of the sources, which will influ-
ence the diagonal element of the coefficient
matrix through the weak self-induced potential
values a; in (30). The value of g is determined
by dflog 8/2—1) where §, is the panel size, It is
small but clearly nonzero. According to a cri-
terion in Press et al{12], the inverse of the con-
dition number, for a typical hydrofoil with 6
percent thickness-chord ratio with N”=100 and
N°=25 is 104, which is small but gives still a
large room to the double precision machine limit
of 10''2, whereas the noncavitating fully wetted
problem gives the condition number of 103 for
the similar case with N”=100(see, p.54 of Press
et al[12] for definition of the condition number
and details on the matrix solver SVDCMP used
for the test.).

After determining the strengths of sources and
normal dipoles, through the solution of the simul-
taneous equations, the cavity thickness may be
computed by integrating the source strengths in
accordance with (24) and by using (23). In this

paper, only the vertical coordinate of the cavity
surface is evaluated. Once the cavity surface is
found for the present step, the sources and nor-
mal dipoles are to be relocated on the newly
obtained cavity surface, and then the process is
repeated wuntil a sufficient convergence is
achieved. Upon convergence, the strength of the
sources vanishes and the converged cavity shape
15 obtained.

For the first iteration, it is necessary to assume
the initial cavity geometry. A simple quadratic
cavity shape with maximum thickness to be equal
to the foil thickness was assumed. The initial ap-
proximation of the cavity geometry is however
found irrelevant to the final solution as long as
the shape is represented by a smooth simple
curve, Based on this nurnerical experiments, we
conclude that the solution is convergent to a true
solution regardless of the initial guess of the cav-
ity shape. For most of the engineering calcula-
tions, a few iterations is found sufficient, but for
most of sample calculations, the number of itera-
tions, N, is set to 10.

Once we get the dipole distribution, then we
can compute the tangential speed |V.] br

differentiating the total potential values {(which
is negative of the dipole strength) along the foil-
cavity surface, We use a simple quadratic ditfer-
entiation formula to take derivatives. Equation
(10) is then used to compute the pressure coef-
ficient, from which the lift, drag and moment
coefficients are obtained by evaluating (13)
through (15), and the cavity volume is obtained
by (16). The cavitation number, ¢ OT Gum, 1S
computed by substituting into (11) the tangential
speed on the cavity surface, |V |, which is
obtained directly by solving the simultaneous
equation.

5. Numerical calculations and discussions

5.1 Convergence test
The first step to implement the numerical pro-



cedure is to show the convergence characteristics
of the discretization.

An NACA 16-006 hydrofoil section, which was
used by Uhlman[5], is chosen for both conver-
gence test and comparison. The computations are
made for the foil at an angle of attack a=4 deg
and with a cavity extent of 50 percent of the
chord length.

Fig. 4 shows the influence of panel numbers
upon the computed cavitation number, ¢, for vari-
ous number of panels, N°(=48, 100. 148, 200),
while looking for the final converged cavity pro-
file through an iterative procedure, together with
those of Uhlman, As the number of panels and
iterations is increased, the two methods are
shown to converge to a common value, The
computed cavitation index predicted by the pres-
ent theory, oum, =0.885, is 1.0 percent higher

than that of Uhlman, 6em =0.874.

0.90
0.88 M
0.86 e
b Present Theory
0.84 o=
—A&— 148
0.82 T T S TR
0.80
0 2 4 6 8 10 12 14 15

Number of iterations, Niter

Fig. 4 Convergence, o versus number of iterations
(NACA 16-006 section, @ =4 deg, //c =0.50, for
NP =48, 100, 148, 200). Comparison with
Uhiman

Although the present formulation based on the
potential function is different from that of
Uhlman based on the velocity function, the final
results are very close to each other. The present
approach, however, proved superior to Uhlman's
by showing the convergence error to be less than
0.2 percent when the panel numbers are varied
from 100 to 200. For engineering purposes, it may
be seen sufficient to iterate twice with N°==48,
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To compare with other theories and experiments,
all the subsequent computations are made with
NP =100 and N"" =5 unless otherwise stated ex-
plicitly.

Fig. 5 shows the convergence behavior of
the cavity volume, obtained with the same con-
dition as in Fig. 4.

The converged cavity shape is illustrated in
Fig. 6. The computed cavity shapes from the sec-
ond and fifth iterations are so close that the fast
convergence of the cavitation index and volume
is readily expected.

In Fig, 7, the pressure distributions on the foil
and cavity surfaces are compared for two differ-
ent panel numbers, Except at the cavity trailing
end, where the theory is not expected to be so
accurate, the pressure distributions show a good
convergernce,

2.00
1.80
L1.60 —
3 B ”
Z 1.40 ’T"/
. Uhiman Present Theory
1.20 X el m TST ok
,’/ --A-- 150 —b&-—~ 18
1.00 L_¢ TSI 0 e 20

0 2 4 6 8 10 12 14 15
Number of iterations, N"¢f

Fig. 5 Convergence, Vol/c3 versus number of itera-
tions{NACA 16-006 section, « =4 deg, //c=0.
50, for N° =48, 100, 148, 200). Comparison

with Uhiman
0.20
— o
~ 0.00 ——
= =
—0.20L
0.00 0.20 0.40 0.60 (.80 1.00

x/c

Fig. 6 Cavity shape after 5-th iteraction(--) and 2-
nd iteration(®) for cavitating NACA 16-006
section with //c =0.50 at « =4 deg



a
7

24

1.00

0.60 ||~

0.20 -
=25 =
-0.20 |7 L

—0.60 ?{AL [

~1.00
0.00

0.20 0.40
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0.60 0.80 1.00

Fig. 7 Pressure distribution, NACA 16-006 section,
« =4 deg, !/c=0.50, for N®=200( - -) and
NP=100(®)

5.2 Influence of blade thickness
It has been reported by Uhlman [5] that, for

the same « /¢ when /I./c < 0.75, the thicker

blade section produces the shorter cavity, This
result, contrary to the prediction by the linear
theory, raised the need for nonlinear analysis,

The study on the thickness effects is repeated
here with the same NACA 16 hydrofoil as in
Uhlman in Fig. 8. The prediction by Uhlman is
confirmed by the present theory, which shows,
however, a more pronounced thickness effect
than Uhlman.

5.3 Comparison with experiment

Experimental data on the observation of cavity
length are so rare that the experimental verifi-
cation of a theory can not be made easily, es-
pecially for the hydrofoil sections with a round
leading edge.

An experiment by Meijer [13] for a symmetric
section with a biconvex profile provides therefore
very valuable information and a guide to a new
theory.

Meijer’s experimental data for a 4 percent bi-
convex foil are compared with the present theory
in Fig. 9, where the relation of the cavity length
versus a /¢ is plotted, This experiment was orig-
inally carried out to verify the theory of Geurst
[14] and was adopted by Uhlman to check his lin-
ear and nonlinear theories.

It may be concluded that both the

)
[} XA-\\\‘“
0.8 )
Lee 812% ’
(t/ey| X 9% .
@ §o;
0.6 670 7
£
C
0.4 Y
Uhlman 12% ,%
(t/c) 9%\ 7
0.2 DZANAN mc//
%
0.0 et
0.0 0.02 0.0 0.06  0.08 010
o/c

Fig. 8 //c versus «/ a, NACA 16 series sections, a =4
deg. Comparison with Uhlman
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UNiman’s Finesr,
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(nuﬁ-lmer&ee' ° -::\ o
05w R
¢ 06
[
0.4
0.2
2.
Uhlman’s
non-linest
0.0 - 2 theory
0.0 0.02 0.04 0.06 0.08 0.10
/0

Fig. 9 Comparison with Meijer’s experimental data
for @ 4 percent biconvex foil. Linear and non-
linear theories of Uhlman are added for com-
parison

nonlinear theories of Uhlman and of the present

paper give good correlation with the experiment
in the range of I./c < 0.75.

6. Conclusions

A potential-based surface panel method is



formulated for the solution of partially-cavitating
flow problem about a two-dimensional hydrofoil.
The method employs the normal dipole and
source distributions on the foil and cavity
surfaces. 1t is shown that the source plays an im-
portant role in positioning the cavity surface
through an iterative process. The cavity closure
condition, which forces the net strength of the
sources to vanish, is found very effective in gen-
erating the closed cavity shape.

Extensive convergence tests are carried out to
show the influence of discretization scheme and
the iterative procedure. The numerical method
shows extremely fast and stable convergence
characteristics.

It is shown that the thicker blade section
produces the shorter cavity. This result is con-
trary to the linear prediction.

In the region of small angle of attack, the pre-
diction shows an excellent comparison with the
Geurst’s linear theory.

For a biconvex hydrofoil, the theory shows a
good correlation with the experimental results by
Meijer.
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