• Title/Summary/Keyword: Cavitation test

Search Result 265, Processing Time 0.027 seconds

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Performance Improvement Study of Propeller Propulsion Efficiency and Cavitation for the 8800TEU Class Container (8800TEU급 컨테이너선 프로펠러 추진효율 및 캐비테이션 성능향상 연구)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha;Ahn, Hae-Seong;Jung, Young-Jun;Yoon, Ji-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • In order to investigate propulsion efficiency and cavitation characteristics for expanded area ratio variation of the 8800TEU class container propeller, a series of performance tests were conducted at Large Cavitation Tunnel (LCT) and Towing Tank (TT) in KRISO. The cavitation test of the existing propellers (KP1029 & KP1030) was conducted using FRP model ship in LCT. On the basis of LCT test results, it was required to design propeller with better propulsion efficiency and cavitation performance. Two propellers (KP1171 & KP1172) with decreased expanded area ratio were designed on the basis of KP1029 propeller. The new design propellers showed higher efficiency than KP1029 and reasonable cavitation performance. In the future, they will be applied as the standard propeller for the propeller design of the large container ship. Through the performance test and prediction results for the new design propellers, it is thought that high-load propeller with better propulsion efficiency and cavitation performance will be developed constantly.

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Study on the Cavitation Damage of Cupronickel(70/30) Tube for Gas Absorption Refrigeration Machine

  • Lim, Uh-Joh;Jeong, Ki-Cheol;Yun, Byoung-Du
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.332-337
    • /
    • 2004
  • The use of gas absorption refrigeration machine has considerably increased because of the shortage of the electric power in the summer and the regulation of freon refrigerant. Gas absorption refrigeration machine consists of a condenser, a heat exchanger. supplying pipes, a radiator etc, This system is likely to be corroded by acid. dissolved oxygen and gases, Cavitation erosion-corrosion by flow velocity of cooling water may happen in absorption refrigeration machine. In these cases. erosion and corrosion occur simultaneously. Then, it makes a serious damage with synergy effect. Therefore, this paper was studied on the cavitation damage of cupronickel(70/30) tube for gas absorption refrigeration machine, In the $30^{\circ}C$ tap water, linear polarization test and anodic polarization test were carried out for copper(C1220T-OL) and cupronickel(70/30) tube. Also, cavitation erosion-corrosion behavior of cupronickel (70/30) tube was considered, The main results are as following: (1) In the linear test, the corrosion current density of cupronickel(70/30) is higher than that of copper. (2) The erosion-corrosion rate of cupronickel(70/30) displayed later tendency than that of copper by vibratory cavitation in cooling water. (3) In cooling water, the progress mechanism of erosion-corrosion rate of copper and cupronickel(70/30) follows a pattern of incubation, acceleration, attenuation and a steady state period.

Hydrodynamic characteristics of X-Twisted rudder for large container carriers

  • Ahn, Kyoung-Soo;Choi, Gil-Hwan;Son, Dong-Igk;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.322-334
    • /
    • 2012
  • This paper shows the numerical and experimental results about the hydrodynamic characteristics of X-Twisted rudders having continuous twist of the leading edge along the span. All the results were compared with those of the semi-balanced rudder. Calculation through the Reynolds-Averaged Navier-Stokes Equation (RANSE) code with propeller sliding meshes shows large inflow angle and fast inflow velocity in the vicinity of ${\pm}0.7$ R from the shaft center, so it may cause cavitation. Also, X-Twisted rudder has relatively small inflow angles along the rudder span compared with semi-balanced rudder. For the performance validation, rudders for two large container carriers were designed and tested. Cavitation tests at the medium sized cavitation tunnel with respect to the rudder types and twisted angles showed the effectiveness of twist on cavitation and the tendency according to the twist. And the resistance, self-propulsion and manoeuvring tests were also carried out at the towing tank. As a result, in the case of X-Twisted rudder, ship speed was improved with good manoeuvring performance. Especially, it was found out that manoeuvring performance between port and starboard was well balanced compared with semi-balanced rudders.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

Performance evaluation facilities and evaluation methods for hydropower equipment (해외 수력발전설비 성능평가설비 및 평가 방법)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.194-194
    • /
    • 2010
  • The variable demand on the energy market, as well as the limited energy storage capabilities, requires a great flexibility in operating hydraulic turbines. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and/or maximum steady-state runaway speed, as well as guarantees related to cavitation. Performance test are conducted by the test standard. Test codes based on extensive research data are written under the leadership of an IEC. Performance evaluation is carry out several test(performance test, cavitation test and runaway test). The paper presents the international turbine test laboratory and performance test standard.

  • PDF

Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Rao, M. Nageswara
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.185-194
    • /
    • 2010
  • A pumpjet propulsor (PJP) was designed for an underwater body (UWB) with axi-symmetric configuration. Its performance was predicted through CFD study and models were manufactured. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel (WT). In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a cavitation tunnel (CT). In order to assess the cavitation free operation speeds and depths of the body, cavitation tests of the PJP were carried out in behind condition to determine the inception cavitation numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. From model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the RPS increases whereas the stator and cowl are free from cavitation.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.