• Title/Summary/Keyword: Cavitation inception speed

Search Result 23, Processing Time 0.024 seconds

An Experimental Study on Noise Characteristics of Propeller Cavitation Inception (프로펠러 캐비테이션의 초기발생과 소음특성에 대한 실험연구)

  • Lee, Phil-Ho;Ahn, Byoung-Kwon;Lee, Chang-Sup;Lee, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Cavitation is the formation of vapour bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Various types of cavitations are generated on the propeller blades. As cavity bubbles passing the blade are forced to oscillate in size or shape and come to collapse, they cause very strong local acoustic waves in the fluid and radiate noise. Comparing the Sound Pressure Level(SPL) before and after cavitation, SPL increases 2dB per 1 knot increase in ship speed above the cavitation inception speed(CIS). Consequently, the CIS is an important criteria to design silent propellers. In this work, experimental measurements of radiated noise according to various types of cavitations from the model propeller are carried out in a large cavitation tunnel and their acoustical characteristics are extensively investigated.

Vortex Cavitation Inception Delay by Attaching a Twisted Thread (Twisted thread에 의한 보텍스 캐비테이션 초생지연)

  • Park, Sang-Il;Lee, Seung-Jae;You, Guek-Sang;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.259-264
    • /
    • 2014
  • Tip vortex cavitation (TVC) is important for naval ships and research vessels that require raising the cavitation inception speed to maximum possible values. The concepts for alleviating the tip vortex are summarized by Platzer and Souders (1979), who carried out a thorough literature survey. Active control of TVC involves the injection of a polymer or water from the blade tip. The main effect of such mass injection (both water and polymer solutions) into the vortex core is an increase in the core radius, consequently delaying TVC inception. However, the location of the injection port needs to be selected with great care in order to ensure that the mass injection is effective in delaying TVC inception. In the present study, we propose a semi-active control scheme that is achieved by attaching a thread at the propeller tip. The main idea of a semi-active control is that because of its flexibility, the attached thread can be sucked into the low-pressure region closer to the vortex core center. An experimental study using a scale model was carried out in the cavitation tunnel at the Seoul National University. It was found that a flexible thread can effectively suppress the occurrence of TVC under the design condition for a model propeller.

A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology (딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구)

  • Ji, Bahan;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

A study on the improvement of cavitation inception speed for controllable pitch propeller in the actual warship (실선관측에 의한 가변추진기의 캐비테이션 초생속도 향상에 관한 연구)

  • Lim, Yong-Su;Jo, Kwan-Jun;Yeun, Je-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1170-1174
    • /
    • 2014
  • If cavitation occurs in propeller, it generates vibration and noise accordingly which results in low efficiency of propeller. It's important to increase cavitation inception speed(CIS) since the noise of cavitation increases significantly from the beginning of cavitation. This paper describes the result of actual observation and measurement onboard ship with controllable pitch propeller(CPP), so as to verify the first occurrence phenomenon of cavitation. The research suggests new type of controllable pitch propeller with improved CIS at the bolt as it started with bolt cavitation as result of observation. It's not found bolt cavitation on the CPP proposed in this paper, furthermore its CIS is increased approximately by 4.5 knots than the existing CPP. The result of the research can be used for development of low-noise CPP and improving performance of CIS.

Propeller Tip Vortex Cavitation Control Using Water Injection (물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어)

  • Lee, Chang-Sup;Han, Jae-Moon;Kim, Jin-Hak;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

A comparative study of cavitation inception of naval ship's propeller using on-board noise and vibration signals (선체 부착 소음/진동 센서를 이용한 함정 추진기 캐비테이션 초생 분석 비교 연구)

  • Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • The occurrence of cavitation on the propeller is directly linked to the naval ship's survivability, and it is necessary to design a propeller shape that delays the cavitation inception. However, the propeller cavitation can occur under various operating conditions, thus it is important to identify whether the propeller cavitation exists during operation as well as in the design phase. To this end, it is necessary to use noise or vibration signals on board to monitor the cavitation inception. In this study, a hydrophone and an accelerometer were installed on the ship hull right above the propeller to compare the performance of analyzing cavitation inception between acoustic and vibration signals. Also, a high speed camera was used to visually observe the occurrence of cavitation through an observation window. The measured results showed that the spectral shapes between acoustic and vibration signals were different, but the level increases at each frequency band and the overall level of the frequency band from 1 kHz to 10 kHz showed a similar tendency. The Detection of Envelope Modulation On Noise (DEMON) analysis also showed similar results for both acoustic and vibration signals, confirming that both hydrophones and accelerometers can be utilized in the analysis of cavitation inception.

Study of the Cavitation Inception Speed (CIS) Improvement Through the Propeller Design and the Stern Appendage Modification (프로펠러 설계 및 선미 부가물 수정에 따른 캐비테이션 초기발생 선속(CIS) 성능 향상 연구)

  • Jong-Woo Ahn;Gun-Do Kim;Bu-Geun Paik;Young-Ha Park;Han-Shin Seol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.231-239
    • /
    • 2023
  • In order to improve the propeller Cavitation Inception Speed (CIS) performance, it needs to modify the propeller geometry and the wake distribution that flows into the propeller. In the previous study, the twisted angles of the V-strut were modified to improve propeller CIS, cavitation behavior and pressure fluctuation performances. Then the propeller behind the modified V-strut (New strut) showed better cavitation characteristics than that behind the existing V-strut (Old strut). However, the CIS of Suction Side Tip Vortex (SSTV) and Pressure Side Tp Vortex (PSTV) showed a big difference at behind each V-strut. In this study, the balance design is conducted to minimize the difference between SSTV CIS and PSTV CIS at behind each V-strut. To improve the propeller CIS performance, 1 propeller is designed at behind the old strut and 3 propellers are designed at behind the new strut. The propeller CIS is increased through the balance design and the stern appendage modification. The final propeller CIS is increased about 5.3 knots higher than that of the existing propeller at behind the old strut. On the basis of the present study, it is thought that the better improvement method for the propeller CIS would be suggested.

Cavitation in Fuel Pump with 2D Cascade Modeling (2차원 Cascade에 의한 연료펌프의 공동발생 해석)

  • Quangnha, Thai;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.483-489
    • /
    • 2009
  • A CFD code was developed to investigate the inception of cavitation around impeller blades of centrifugal fuel pump using two dimensional cascade modeling. With the verification test for numerical validity of the developed code, the prediction of the onset of cavitation was made for the configuration of a newly designed KHP fuel pump. The calculation results show impeller design was free of cavitation if the pump operates within the operational temperature and rotational speed range. However, the cavitation would be relatively easy to occur at off design region of fuel pump where the rotational speed is higher than design limit. Specially, the onset of cavitation is sensitively dependent on the increase in fuel temperature while the decrease in temperature will reduce the possibility of cavitation inception in the pump.

Study of the Propeller Cavitation Performance Improvement Through the Stern Appendage Modification (선미 부가물 수정에 따른 프로펠러 캐비테이션 성능 향상 연구)

  • Jong-Woo Ahn;Young-Ha Park;Gun-Do Kim;Bu-Geun Paik;Han-Shin Seol;Il-Ryong ParK
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In order to improve the propeller cavitation performance composed of Cavitation Inception Speed (CIS), cavitation extent and pressure fluctuation, it needs to improve the wake distribution that flows into the propeller. The warship propeller cavitation is strongly influenced by the wake created at the V-strut of various appendages. The inflow characteristics of the V-strut were investigated using Computational Fluid Dynamics (CFD) and the twisted angles of the V-strut were aligned with upstream flow. The resistance and self-propulsion tests for the model ship with the existing and modified V-struts were conducted in Towing Tank (TT), and wake distribution, CIS, cavitation observation and pressure fluctuation tests were conducted in Large Cavitation Tunnel (LCT). The propeller behind the modified V-strut showed better cavitation characteristics than that behind the existing V-strut. Another model test was conducted to investigate rudder cavitation performance by the change of the V-strut. The rudder cavitation characteristics were not improved by the change of the operating conditions. On the basis of the present study, it is thought that the stern appendages for better propeller cavitation performance would be developed.