Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단((No.2019R1A2C1084306)과 삼성중공업의 지원으로 수행된 연구임.
References
- Lee, P.H., Ahn, B.K., Lee, C.S & Lee, J.H., 2011. "An experimental study on noise characteristics of propeller cavitation inception," Journal of the Society of Naval Architects of Korea, 48(1) pp.1-7. https://doi.org/10.3744/SNAK.2011.48.1.1
- Ji-Woo Hong, Byoung-Kwon Ahn., 2021, "Study on visualization of vortex flow on hydrofoils," Journal of The Korean Society of Visualization, 19(2), 48-55. https://doi.org/10.5407/JKSV.2021.19.2.048
- Bahan Ji, Byoung-Kwon Ahn., 2021. "A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology," Journal of the Society of Naval Architects of Korea, 58(2), 105-111. https://doi.org/10.3744/SNAK.2021.58.2.105
- Chang-Min Kim, Kyu-Woong Lee., 2017. "Motion Area Detection Algorithm based on Irregularity of Light," Journal of KIISE, 44(10), 1094-1104. https://doi.org/10.5626/JOK.2017.44.10.1094
- Zoran Zivkovic and Ferdinand van der Heijden., 2006, "Efficient adaptive density estimation per image pixel for the task of background subtraction." Pattern recognition letters, 27(7):773-780. https://doi.org/10.1016/j.patrec.2005.11.005
- Ester, Martin, et al., 1996, "A density-based algorithm for discovering clusters in large spatial databases with noise," kdd. Vol. 96. No. 34.
- Wu, Y., Kirillov, A., Massa, F., Lo, W. Y. and Girshick, R., 2019, Detectron2, Github, https://github.com/facebookresearch/detectron2, (last date accessed: 3 November 2022).
- Detectron2. https://detectron2.readthedocs.io/en/latest/tutorials/training.htm.(last date accessed: 3 November 2022).