• Title/Summary/Keyword: Cavitation corrosion rate

Search Result 30, Processing Time 0.022 seconds

Investigation on electrochemical performance of Al anode material for marine growth prevention system

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su;Lee, Seung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.968-973
    • /
    • 2014
  • Aluminum anode of marine growth prevention system for ship is installed in seachest or sea water strainer. The Al anode is connected to a control panel that feeds a current to the anode. The dissolved ions produced by the anode are transferred in sea water, spreads through the sea water pipe system and creates a protective film in the pipelines. Thereby, corrosion in pipeline system significantly is reduced. In application on condition as a steel ship, the big accident can be caused by the corrosion. Accordingly, in this research, we evaluated influence of applied current and flow velocity on electrochemical characteristics of Al anode for marine growth prevention system (MGPS). Based on the results of the erosion-cavitation experiments, cavitation rate increased greatly until 120 min. of the experimental time and decreased a little at the point of 180 min. where pit grew and merging occurred but showed a tendency of steadily increasing consumption rates. Based on the results of the Tafel analysis, compared to static states, corrosion current densities show a rapidly increasing tendency when flow occurred.

Study on the Performance Deterioration of Erosion-corrosion Damaged Automotive Water Pump (침식 마모 손상된 차량용 워터펌프의 성능저하 연구)

  • Jeon, Seung-Won;Park, Chan-Seong;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • A flow analysis for the erosion-corrosion damaged automotive water pump which causes vehicle fire is numerically performed using the CFX program, computational fluid dynamics (CFD) code. The blade bending deformation and the blade clearance enlargement are considered in the analysis of performance reduction. For the cavitation analysis, the homogeneous multi phase model is adopted using the Ralyleigh-Plesset model for the rate equation controlling vapor generation and condensation.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy (WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

Characteristics of surface damage with applied current density and cavitation time variables for 431 stainless steel in seawater (431 스테인리스강의 해수 내 적용 전류밀도 및 캐비테이션 시간 변수에 따른 표면손상 특성)

  • Kim, Seong-Jong;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.883-889
    • /
    • 2014
  • It is generated for cavitation erosion due to the local static boiling by pressure differentials in high speed rotating fluid environment. The cavitation is influenced by various elements such as pressure, velocity, temperature, pH of fluid and medium. In particular, the damage of material is accelerated due to the electrochemical corrosion by $C1^-$ and cavitation erosion due to cavities in seawater. In this paper, hence, it investigated for martensite stainless steel the damage behavior with applied current density and cavitation time in natural seawater solution. Less damage depth at the cavitation condition was observed than static condition as a result of galvanostatic experiment. Furthermore, it was shown that dramatic increase of weightloss, damage rate and damage depth after 3 hour of cavitation test.

Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation (공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants (원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성)

  • Hwang, Kyeong Mo;Yun, Hun;Park, Hyun Cheol
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

A Study for the Effect of Liquid Droplet Impingement Erosion on the Loss of Pipe Flow Materials (배관 재질 손상에 미치는 액적충돌침식의 영향에 대한 연구)

  • Kim, Kyung Hoon;Cho, Yun Su;Kim, Hyung Joon
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • Wall thinning of pipeline in power plants occurs mainly by flow acceleration corrosion (FAC), cavitation erosion (C/E), liquid droplet impingement erosion (LDIE). Wall thinning by FAC and C/E has been well investigated; however, LDIE in plant industries has rarely been studied due to the experimental difficulty of setting up a long injection of highly-pressurized air. In this study, we designed a long-term experimental system for LDIE and investigate the behavior of LDIE for three kinds of materials (A106B, SS400, A6061). The main control parameter was the air-water ratio (${\alpha}$), which was defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). In order to clearly understand LDIE, the spraying velocity (${\nu}$) of liquid droplets was controled larger then 160 m/s and the experiments were performed for 15 days. Therefore, this research focuses relation between erosion rate and air-water ratio on the various pipe-flow materials. NPP(nuclear power plant)'s LDIE prediction theory and management technique were drawn from the obtained data.