• Title/Summary/Keyword: Cavitating flow analysis

Search Result 52, Processing Time 0.021 seconds

CAVITATION FLOW ANALYSIS OF HYDROFOIL WITH CHANGE OF ANGLE OF ATTACK (받음각 변화에 대한 수중익형의 캐비테이션 해석)

  • Kang, T.J.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.17-23
    • /
    • 2014
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc. Thus, the cavitating flow simulation is of practical importance for many engineering systems. In the present work, a two-phase flow solver based on the homogeneous mixture model has been developed. The solver employs an implicit preconditioning, dual time stepping algorithm in curvilinear coordinates. The flow characteristics around Clark-Y hydrofoil were calculated and then validated by comparing with the experimental data. The lift and drag coefficients with changes of angle of attack and cavitation number were obtained. The results show that cavity length and lift, drag coefficient increase with increasing angle of attack.

Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.546-558
    • /
    • 2013
  • The research performed in this paper was carried out to investigate the numerical analysis of the sheet cavitation on marine propeller. The method is boundary element method (BEM). Using the Green's theorem, the velocity potential is expressed as an integral equation on the surface of the propeller by hyperboloid-shaped elements. Employing the boundary conditions, the potential is determined via solving the resulting system of equations. For the case study, a DTMB4119 propeller is analyzed with and without cavitating conditions. The pressure distribution and hydrodynamic performance curves of the propellers as well as cavity thickness obtained by numerical method are calculated and compared by the experimental results. Specifically in this article cavitation changes are investigate in both the radial and chord direction. Thus, cross flow variation has been studied in the formation and growth of sheet cavitation. According to the data obtained it can be seen that there is a better agreement and less error between the numerical results gained from the present method and Fluent results than Hong Sun method. This confirms the accurate estimation of the detachment point and the cavity change in radial direction.

Application of a Potential-Based Panel Method for Analysis of a 2-Dimensional Cavitating Hydrofoils Advancing Beneath a Free-Surface (자유수면 아래서 유한 Froude 수로 전진하는 2차원 수중익의 부분 및 초월 공동 유동 문제 해석)

  • J.M. Lew;C.S. Lee;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • A potential-based panel method is presented for the analysis of a partially or supercavitating two-dimensional hydrofoil at a finite submergence beneath a free surface, treating without approximation the effects of the finite Froude number and the hydrostatic pressure. Free surface sources and normal dipoles are distributed on the foil and cavity surfaces, their strength being determined by satisfying the kinematic and dynamic boundary conditions on the foil-cavity boundary. The cavity surface is determined iteratively as a part of the solution. Numerical results show that the wave profile is altered significantly due to the presence of the cavity. The buoyancy effect due to the hydrostatic pressure, which has usually been neglected in most of the cavitating flow analysis, is found playing an important role, especially for the supercavitating hydrofoil; the gravity field increases the cavity size in shallow submergence, but decreases it when deeply submerged, while the lift reduces at all submergence depth.

  • PDF

A Potential-Based Panel Method for the Analysis of a 2-Dimensional Partially Cavitating Hydrofoil (양력판 이론에 의한 2차원 수중익의 부분 캐비티 문제 해석)

  • Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • A potential-based panel method is formulated for the analysis of a partially cavitating 2-dimensional hydrofoil. The method employs dipoles and sources distributed on the foil surface to represent the lifting and cavity problems, respectively. The kinematic boundry condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the inner flow region of the foil. The dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the velocity be constant. Green's theorem then results in a potential-based boundary value problem rather than a usual velocity-based formulation. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with more improved accuracy than the zero-thickness hydrofoil theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. It was found that five iterations are necessary to obtain converged values, while only two iterations are sufficient for engineering purpose.

  • PDF

Cavitation Instabilities of Hydrofoils and Cascades

  • Tsujimoto, Yoshinobu;Watanabe, Satoshi;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.38-46
    • /
    • 2008
  • Studies on cavitation instabilities of hydrofoils and cascades are reviewed to obtain fundamental understandings of the instabilities observed in turbopump inducers. Most of them are based on the stability analysis of two-dimensional inviscid cavitating flow. The most important finding of the analysis is that the cavitation instabilities depend only on the mean cavity length. For a hydrofoil, the characteristic length is the chord length and partial/transitional cavity oscillation occurs with shorter/longer cavity than 75% of the chord length. For cascades, the characteristic length is the blade spacing and various modes of instabilities are predicted when the mean cavity is longer than 65% of the spacing. In the last part, rotating choke is shown to occur when the cavity becomes longer than the spacing.

Measurement Uncertainty Analysis for Fluctuating Hull Pressure (선미변동압력 계측시험에서의 불확실성 해석)

  • G.I. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.46-60
    • /
    • 1993
  • Accurate measurements of fluctuating pressure in the cavitation tunnel are necessary to predict vibration and noise intensities in full scale ship. In this paper, the results of an experimental study on fluctuating pressure induced by a cavitating propeller are presented and discussed. Extensive measurements at several propeller revolutions are made using the flat plate to understand controversial problems of the effects of propeller revolution in the cavitation tunnel. The analysis of the uncertainties in experimental measurements and results is used to estimate the errors in uniform flow.

  • PDF

AN INVESTIGATION OF SURFACE VORTICES BEHAVIOR IN PUMP SUMP

  • Kang, Won-Tae;Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.592-595
    • /
    • 2011
  • A numerical investigation on a suction vortices, free vortices and subsurface vortices behavior in the model sump system with multi-intakes is performed A test model sump and piping system were designed based on Froude similitude for the prototype of the recommended structure layout by HI-9.B Standard for Pump Intake Design of the Hydraulic Institute. A numerical analysis of three dimensional multiphase flows through the model sump is performed by using the finite volume method of the CFX code with multi-block structured grid systems. A ${\kappa}-{\omega]$ ShearStressTransportturbulencemodelandthe Rayleigh-Plesset cavitation model are used for solving turbulence cavitating flow. From the numerical analysis, several types of vortices are reproduced and their formation, growing shedding and detailed vortex structures are investigated. To reduce abnormal vortices, an anti-vortex device is considered and its effect is investigated and discussed.

  • PDF

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

Viscous Effects on the Characteristics of TP620 Hydrofoil (점성의 영향을 고려한 박용 TP620 익형의 익특성 연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.137-141
    • /
    • 1985
  • In this paper, the author investigate viscous effects on the characteristics of TP620 hydrofoil. The pressure distribution on the foil section in non-cavitating flow should be considered its characteristics of displacement thickness due to viscous effects. Theoretical potential theory, which neglects viscous effects do not agree with this analysis, especially at leading edge region of the foil. And, the efficiency of TP620 hydrofoil considering viscous effects is a little lower than that of the foil, which neglected viscous effects.

  • PDF

A Numerical Study of Effects of Body Shape on Cavity and Drag of Underwater Vehicle (몸체 형상이 수중운동체의 공동 발달과 항력특성에 미치는 영향에 대한 수치적 연구)

  • Kim, Hyoung-Tae;Kang, Kyung-Tae;Choi, Jung-Kyu;Jung, Young-Rae;Kim, Min-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.252-264
    • /
    • 2018
  • The calculation of steady-state cavitating flows around Supercavitating Underwater Bodies (SUB's), which consist of a circular disk head (cavitator), a conical fore-body, a cylindrical middle-body and either a boat-tail or a flare-tail, are carried out. To calculate the axisymmetric cavitating flow, used is a commercial computational fluid dynamics code based on the finite volume method, Fluent. From the analysis of numerical results, the cavity and drag, affected by the fore-body and tail of the SUB's, are investigated. Firstly, the effect of the fore-body shape is investigated with the same disk cavitator and a cylindrical rear-body of fixed diameter. Then with the same cavitator and a fixed fore-body, the effect of the rear-body shape is investigated. Before the cavity generated by the cavitator covers the slant of fore-bodies sufficiently, the larger the cone angle of the fore-body(i.e., the shorter the slant length), the larger the drag and the slower the development of cavity. After the cavity covers the fore-body completely so that the pressure drag component of the body is vanished, the characteristics of drag-velocity curves are identical. Also, as the tail angle is bigger, the cavity generated by the cavitator is suppressed further and the drag becomes larger. The peak of the drag appears for the flare-tail, i.e., when the tail angle is positive(+). On the contrary, the trough of the drag appears for the boat-tail, i.e., when the tail angle is negative(-). When the tail angle is 5 degrees, the peak of the drag appears at the body speed of 80m/s and the value of the drag is 43% larger than that at the design speed of 100m/s. When the tail angle is -5 degrees, the trough of the total drag appears at 75m/s and that drag is 30% smaller than that of the cavitator, which means the rest of the body has a negative drag.