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Abstract 

Studies on cavitation instabilities of hydrofoils and cascades are reviewed to obtain fundamental understandings of 
the instabilities observed in turbopump inducers. Most of them are based on the stability analysis of two-dimensional 
inviscid cavitating flow. The most important finding of the analysis is that the cavitation instabilities depend only on 
the mean cavity length. For a hydrofoil, the characteristic length is the chord length and partial/transitional cavity 
oscillation occurs with shorter/longer cavity than 75% of the chord length. For cascades, the characteristic length is the 
blade spacing and various modes of instabilities are predicted when the mean cavity is longer than 65% of the spacing. 
In the last part, rotating choke is shown to occur when the cavity becomes longer than the spacing. 
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1. Introduction 
Cavitation instabilities are major concern in modern turbopump inducers for rocket engines. Although the flow in the 

inducer is very complicated with three- dimensional cavities, the most of cavitation instabilities can be predicted by a two-
dimensional stability analysis of cavitating flow through cascades. This article treats cavitation instabilities of hydrofoils and 
cascades to obtain fundamental understanding of cavitation instabilities in turbopump inducers. 

2. Cavitation Instabilities of Hydrofoils 
Cavitating flows are always unsteady with unsteady shedding of cavities. Here, we consider the unsteady flows with definite 

frequency components but without definite external forcing to be instabilities. Figure 1 shows the pictures of cavitation on a 
two-dimensional hydrofoil (Franc [1]). While the flow shown in Fig.1(a) can be considered as steady, the flow shown in Fig.1(b) 
exhibits a large amplitude oscillation with the large scale shedding of cloud cavitation. Figure 2 shows the plot of Strouhal 

2number S f / of this type of instabilities against the cavitation number σ = ( p p )  /(  ρU /  2)  where f is the frequency = l U −t s v
of oscillation, l is the mean cavity length, U is the flow velocity, p is the inlet pressure, p is the vapor pressure, and ρ is the s v
liquid density. Although the data in Fig.2 are obtained by Kawanami et al. [2] in different facility with different foil geometry and 
different angle of attack, the Strouhal numbers are within the range between 0.25 and 0.45. This type of oscillation occurs at 

(a) (b)
Fig.1 Visualizations of partial cavities on a two-dimensional hydrofoil in a cavitation tunnel (Franc [1])
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Fig.2 Strouhal number vs. cavitation number
 (Kawanami et al. [2]) 

Fig.3 Cavity growth on NACA 0012 profile at an angle 
of attack of 6°and a cavitation number 0.25 
(de Lange and de Brun [3]) 

Fig.4 Strouhal number of pressure fluctuation 
on the suction side of a NACA 0015 foil 
(Kjeldsen et al. [8]) 

Fig.5 Strouhal number of inlet pressure 
fluctuation on a hydrofoil 
(Sato et al. [9]) 

partial cavitation with ls / C < 0.75  where C is the chord length and is accompanied with cloud shedding. So, it is called 
“cloud cavity oscillation” or “partial cavity oscillation”. This type of oscillation is generally explained as follows. Since the 
flow velocity on the cavity surface is kept nearly constant so that the pressure on the cavity is kept constant, the cavity trailing 
edge cannot be a stagnation point and a reentrant jet is formed at the trailing edge. The reentrant jet penetrates into the cavity 
along the foil surface and eventually impacts the front surface of the cavity. Figure 3 shows the development of the cavity and 
the reentrant jet simulated by a boundary element method (de Lange and de Brun [3]). Although this calculation with the 
boundary element method cannot be continued after the collision of the reentrant jet, the cavity separates at the location of 
collision and the rear part flows down on the main flow. The front part of the cavity attached to the blade surface re-starts to 
grow and the same process is repeated. Kubota et al. [4] applied a bubbly flow model, Song and He [5] and Iga et al. [6] a 
barotropic model to successfully simulate the instability. Kawanami et al. [7] clarified the role of reentrant jet by showing that 
the instability can be avoided by stopping the reentrant jet by placing a fence on the suction surface of a blade. J-P Franc [1] 
points out the following conditions required for this type of oscillations to occur: (1) Existence of adverse pressure gradient near 
the cavity trailing edge to accelerate the reentrant jet, (2) The cavity has a sufficient thickness so that the reentrant jet can reach 
upstream without premature interference with the cavity surface. 

Figure 4 shows the Strouhal number of the pressure fluctuation measured on the suction surface of a NACA 0015 hydrofoil 
(Kjeldsen et al. [8]), and Fig. 5 shows the Strouhal number St = fC /U of the inlet pressure fluctuation of a flat plate hydrofoil 
(Sato et al. [9]). In both cases the frequency is normalized by using the chord length C of the hydrofoil. In Fig.5, Ld is the 
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  Fig.6 Results of stator cases for the cascade with solidity C/h=0.1, stagger angle β=75.0°, duct length L/C=10.0  
and 1000.0 (Watanabe et al. [10]) 

length of the test section upstream of the foil leading edge. In both cases, The frequency increases as the mean cavity length 
( l in Fig.4 and l in Fig.5) decreases in the range ls / C < 0.75 . The Strouhal number based on the mean cavity length s
S = fl /U is about 0.3 for Fig.4 and 0.1 for Fig.5. This corresponds to the partial cavity oscillation discussed in the last t s
paragraph. In the range ls / C > 0.75 , the Strouhal number St = fC /U based on the chord length is kept nearly constant, 0.15 in 
Fig.4 and 0.12 in Fig.5. This is called transitional cavity oscillation. It was found that the transitional cavity oscillation has a 
sharper and higher spectrum peak as compared with the partial cavity oscillation. Thus, partial and transitional cavity oscillation 
has different characteristics suggesting that they have different mechanisms of instability. The transitional cavity oscillation was 
reported by Wade and Acosta in 1966, which is the first detailed report on cavitation instabilities. 

Figure 6 shows the results of two-dimensional analysis of cavitating flows through a cascade with the solidity C / h = 0.1 
( h is the blade spacing) and the stagger β = 75deg , based on a closed cavity model (Watanabe et al. [10]). Figure 6 (a) shows 
the relation between the steady cavity length ls / C and a parameter σ / 2α  where α is the angle of attack. Acosta [11] 
showed for the first time that the steady cavity length ls / C is a function of σ / 2α in a linearized cavity theory.  For 
ls / C < 0.78 , cavity length increases as the value of σ / 2α is decreased. On the other hand, for ls / C > 0.78 , the cavity length 
increases as the value of σ / 2α is increased. Similar results were obtained by Acosta [11] for a flat plate hydrofoil although 
the critical cavity length is 0.75 instead of 0.78 of the present result for low solidity cascade. 

A linear stability analysis of the cavitating flow was made by using the closed cavity model allowing the cavity length to 
oscillate freely but in phase for all the blades of the cascade and assuming a small perturbation. A finite duct length L / C is 
assumed so that the cavity volume fluctuation is allowed and to clarify its effect on the frequency. At the entrance of the duct, it 
is assumed that the total pressure and the flow direction are kept constant. The most important finding of this analysis is that the 
stability and the frequency of the instability depend totally on the mean cavity length ls / C , or equivalently, the value of σ / 2α . 
This result has been confirmed for the cases of a hydrofoil (Acosta [11]), an inducer (Watanabe et al. [12]), a marine propeller 
(Duttweiler and Brennen [13]) and a centrifugal pump (Friedrichs and Kosyna [14]). Figure 6 (b) shows the Strouhal number of 
destabilizing modes obtained by the stability analysis, plotted against the steady cavity length ls / C . Three modes are predicted 
within the frequency range shown. It is interesting to note that the Strouhal number based on the mean cavity length is kept 
nearly constant for each mode.  However, the values are much larger than the experimental ones 2π × 0.1 = 0.628 or 
2π × 0.3 =1.88 and does not depend on the upstream duct length L / C . Here, we focus on Mode I. The frequency of this 
mode is zero and appears for ls / C > 0.78 , where the cavity length increases as the value of σ / 2α  is increased.  The existence 
of this mode suggests exponential increase or decrease of cavity length. To explain this mode, the cavitation compliance defined 

2 2as K = −[ρU /(2h )]× (∂Vc / ∂p ) where Vc is the cavity volume per blade was calculated and shown in Fig.6 (c). It is shown 1 
that the cavitation compliance becomes negative in the region with ls / C > 0.78 . With K < 0 , the cavity volume decreases if the 
pressure is decreased and the pressure around the cavity will decrease further due to the dynamic pressure of the flow towards the 
cavity to fill up the space of the decreased cavity. So, the cavity with K < 0 is statically unstable. The existence of Mode I 
shows the static instability of the cavity in the region with ls / C > 0.78 and suggests the exponential transition to other condition. 

The linear stability analysis showed simply that the solution in the transitional range ls / C > 0.78 is statically unstable due to 
the negative cavitation compliance in this region. So, the transitional cavity oscillation in this range can be considered to be 
caused by the fact that there is no statically stable solution. To confirm this, a time marching calculation was made by allowing a 
large amplitude oscillation while assuming a linear cavity model (Watanabe et al. [15]) and the results are shown in Fig.7. A 
large amplitude transitional cavity oscillation has been obtained. At partial cavitation, a damping oscillation was obtained by the 
time marching calculations and it was found that the frequency agrees with that of a damping mode predicted by the linear 
stability analysis. Those frequencies are shown in Fig.8, as well as the frequency of the transitional cavity oscillation. They 
reasonably agree with the experiment shown in Fig.5. 

From these results, we are considering that the transitional cavity oscillation is a non-linear oscillation caused by the negative 
cavitation compliance and that the partial cavity oscillation is caused by the excitation of the damping modes by the reentrant jets. 
In the experiments shown in Fig.5, it was found that the reentrant jet exists also for the transitional oscillation. However, the 
oscillation could not be changed by stopping the reentrant jet by placing a fence. This shows that the reentrant jet is not the 
cause of the transitional cavity oscillation but a result of cavity oscillation. 
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Fig.7 Results for the case of linearly decreasing cavitation number σ from 0.35 to 0.2 for t=0－30C/U
(Watanabe et al. [15]) 

Fig.8 Strouhal number of fluctuation obtained by a time marching 
calculation of blade cavitation (Watanabe et al. [15]) 

3. Cavitation Instabilities in Cascades 
In cavitating flows through cascades, different types of cavitation instabilities such as cavitation surge and rotating cavitation 

occur. These cavitation instabilities can be predicted by representing the effects of cavitation by the cavitation compliance K
defined before and the mass flow gain factor M = ∂(V / h2 ) / ∂α representing the rate of increase of the cavity volume due to the c
increase of the incidence angle α . The onset condition can be represented by M > 2(1+σ )φK for both cases using the flow 
coefficient φ (Tsujimoto et al. [16,17]). For rotating cascades, the angle of attack α decreases if the flow rate is increased to 
fill up the space of decreased cavity. If the angle of attack is decreased, the cavity volume is decreased generally and this relation 

2is represented by M = ∂(V / h ) / ∂α > 0 . Then, the upstream flow rate is increased further. This positive feedback through c
M > 0 is the cause of cavitation surge and rotating cavitation. Cavitation compliance has a positive value for general cases. 
K > 0 has a stabilizing effect by mitigating the pressure fluctuation through the change of the cavity volume. So, the criterion 
M > 2(1+σ )φK for the instabilities shows that the instabilities occur when the destabilizing effects of M > 0 exceeds the 
stabilizing effects of K > 0 . The local flow instability near the rotor caused by this mechanism is the rotating cavitation and the 
global instability occurring in the whole system is the cavitation surge. Flow instabilities caused by blade stall, rotating stall and 
surge, occur only at smaller flow rates. On the other hand, the cavitation instabilities can occur even at design flow rate and this 
makes the problem more serious. The frequency of normal surge is not affected by the rotational speed, while the frequency of 
cavitation surge is proportional to the impeller speed. The stalled region of rotating stall rotates slower than the rotor, while the 
normal mode of rotating cavitation rotates faster than the impeller. 

The results of the stability analysis of cavitating flow through a cascade are shown in Fig.9.  The periodicity of the 
disturbance over 4 blades is assumed, correspondingly to the case of 4-bladed inducer. The steady cavity length ls / h  is plotted 
in the upper part of the figure. The Strouhal number St =ωl /(2πU ) of destabilizing modes is plotted in the lower part of the s
figure against the parameter σ / 2α (Horiguchi et al. [18]). We focus on the plot of ls / h in the upper part of Fig.9(a). For 
larger values of σ / 2α , the cavity length equals on each blade as shown by the full line in the upper part of Fig.9(a). As the 
value of σ / 2α decreases, the length of the equal cavity increases and when the length of equal cavity becomes 65% of the blade 
spacing, a steady solution corresponding to the alternate blade cavitation, in which the cavity length changes alternately on each 
blade, starts to appear. The flow field around the alternate blade cavitation is shown in Fig.10 (c). The cavity length of 
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(a) Strouhal number for (b) Strouhal number for (c) Phase angle for alternate
equal length cavitation  alternate blade cavitation  blade cavitation 

Fig.9 Destabilizing roots for the cascade with 4 blades. Solidity C/h=2.0, stagger angle β=80° (Horiguchi et al. [18]) 

Table 1 Summary of stability analysis. The frequencies are calculated from Fig.9 

alternate blade cavitation is shown by a dotted line in the upper part of Fig.9 (a), and by full lines in the upper pat of Figs.9 (b) and 
(c). In the lower part of Fig.9 (a) and (b), Strouhal numbers of destabilizing modes for equal length and alternate blade cavitation 
are plotted. In each figure, the phase difference θn,n+1 of the disturbances on the blade number n and n+1 is also shown. First, 
consider Mode I in Fig.9 (a). The frequency of this mode is zero and the phase difference on adjacent blade is π . So, the 
existence of this mode for l / h > 0.65 shows exponential transition between equal and alternate blade cavitation and that the s
equal length solution with l h/ > 0.65  is statically unstable for a disturbance transitioning to alternate blade cavitation. Thiss
mode does not exist for the alternate blade cavitation shown in Fig.9 (b) and the alternate blade cavitation is statically stable. 
This is the reason why alternate blade cavitation occurs. Various kinds of modes exist in the region with l / h > 0.65 . Theys
are classified as shown in Table 1, based on the phase difference θn,n+1 obtained from the analysis. The frequency observed in 
the stationary frame f is normalized the rotational frequency fN . For rotating modes, the rotational speed of the disturbance 
ω is normalized by the rotational speed of the rotor Ω . Negative values show that the disturbance is rotating in the opposite 
direction to the rotor. Among these modes, only Mode II representing cavitation surge and Mode III corresponding to forward 
mode of rotating cavitation appear in most cases. Other higher order modes are observed less frequently but they do occur. 
Examples of these modes can be found in the references shown in the table. The frequencies of higher order modes are so high 
and may cause resonance with the blade bending modes. Actually, a phenomenon similar to Mode IX was found in water tests 
for the assessment of the liquid hydrogen turbopump inducer blade failure of the 8th launch of HII rocket (Motoi et al. [19]). 

We consider about the cause of the instabilities from the flow fields. Figure 10 shows the flow fields around shorter and 
longer equal cavities (Fig.10 (a) and (b)) and alternate blade cavitation (Fig.10 (c)). For each case, we can find a region near the 
cavity trailing edge where the velocity vector is inclined towards the suction surface of the blades. In this region, the flow angle 
to the opposing blade is smaller. This region starts to interact with the leading edge of the next blade when the cavity length 
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(a) Equal length cavitation (b) Equal length cavitation (c) Alternate blade cavitation 
(α/(2α)=7.0, ls/h=0.202) (α/(2α)=2.58, ls/h=0.640) (α/(2α)=2.58, ls/h=0.249 and 0.882) 

Fig.10 Steady cavity shapes and velocity vector in the cascade with solidity C/h=2.0, stagger angle β=80°
in the case with angle of attack α=4.0° (Horiguchi et al. [18]) 

Fig.11 Suction performance of the inducer of the 
LE-7A LH2 turbopump 

becomes about 65% of the blade spacing. We consider the case when the cavity length on one blade gets larger and the region 
gets closer to the next blade. Then, the incidence angle to the next blade gets smaller and the cavity on the next blade becomes 
smaller. This is the reason why alternate blade cavitation occurs. Since all instability modes except for Mode IX appears for 
ls / h > 0.65 , they are also considered to be caused by the interaction. Mode IX in Fig.9 corresponds to Mode II in Fig.6 (b), 
showing that the mode is not affected by the cascade geometry. With this mode, the cavity surface waves keeping the cavity 
volume to be constant. 

4. Cavitation Instability Associated With Head Breakdown  
All cavitation instabilities treated in the preceding section occur in the region where the performance degradation is 

insignificant. At an early stage of LE-7A engine firing tests for HIIA rocket, an excessive shaft vibration of fuel turbopump was 
observed (Shimura et al. [20]) when the inlet pressure to the pump was decreased. Figure 11 shows the relationship between the 
cavitation number and the head coefficient for two groups of flow rate φ /φd . The lower figure shows the amplitude of shaft 
vibration for the cases of smaller flow rates. With smaller flow rates, the head suddenly decreases at σ = 0.025  and the 
amplitude of shaft vibration increases. With higher flow rates, the sudden head drop and the increase of the shaft vibration do 
not occur. An experiment with liquid hydrogen at full speed (Shimura et al. [20]) showed that the vibration was caused by the 
rotation of a pressure pattern at the inlet with a rotational speed 50% of the impeller. From the results of Fig.11, the head-flow 
performance curve can be schematically shown as Fig.12 for the cases with smaller and larger cavitation numbers.  With smaller 
cavitation number, the head is higher at larger flow rate and the performance curve has a positive slope. For compressors, surge 
and rotating stall occur associated with the positive slope of the performance curve caused by blade stall at lower flow rate. 
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Fig.12 Head dependence for low and high Fig.13 Scheme of the cavity-wake flow 
cavitation number (Semenov et al. [21]) 

Fig.14  Head performance for various cavitation Fig.15 Propagation velocity ratio for rotating 
numbers and regions of cavitation cavitation and rotating choke 
instabilities (open circles : rotating (Semenov et al. [21]) 
cavitation, closed circles : rotating choke), 
for the cascade with solidity C/h=2.35, 
stagger angle β=80°(Semenov et al. [21]). 

Figures 11 and 12 show that the positive slope of the performance curve may occur even near the design flow rate, caused by the 
head decrease due to cavitation. The head decrease due to cavitation occurs when the cavity extends into the blade passage and 
blocks the flow passage. This is called “choke” by cavitation. If the flow rate decreases under choke, the cavity thickness and 
the blockage by cavitation increases and the head can decrease. So the positive slope in Fig.12 is caused by the choke by 
cavitation and the phenomenon observed can be termed “rotating choke”. 

The closed cavity model used in sections 2, and 3 cannot predict the head decrease. So a cavity model with a cavity wake as 
shown in Fig.13 was applied by Semenov et al. [21]. The performance curves predicted by the model are shown in Fig.14 for 
various cavitation numbers. Positive slope is reproduced by the model with smaller cavitation number and flow rates. Figure 15 
shows the propagation velocity ratio ω / Ω determined from a stability analysis using the cavity model. Rotating cavitation with 
ω / Ω >1 starts to occur at larger σ and rotating choke with ω / Ω <1 occurs at smaller σ . On the performance curves 
shown in Fig.14, the occurrence of rotating cavitation is shown by open circles and rotating choke by closed circles. It is shown 
that rotating cavitation occurs mainly at higher cavitation number where the performance curve has negative slope while rotating 
choke occurs in the region with positive slope of the performance curve. 

5. Conclusion 
It was shown that there are various types of cavitation instabilities with different causes.  Most of them can be predicted by a 

potential flow analysis based on a closed cavity model. The most important factor controlling the cavitation instability is the 
mean cavity length l or a parameter σ / 2α . For isolated hydrofoils, the appropriate length scale is the chord length C of the s
hydrofoil. The partial cavity oscillation with l C < 0.75  /  of an isolated hydrofoil is caused by the excitation of a damping mode s

% / is a large amplitude excursion caused by the by the re-entrant jet.  The transitional cavity oscillation with l C > 0.75  s
%destabilizing effect of negative cavitation compliance. For cascades, the appropriate length scale is the blade spacing h and 

various modes of cavitation instability occur for 1.0 > l h/ > 0.65 . They can be explained by the interaction of the local flow s
% % / caused by the near the cavity trailing edge with the leading edge of the next blade. Rotating choke occurs for l h >1.0  s

positive slope of the performance curve. %

Usually turbopump inducers are operated under the condition with l / h > 0.65 and for the most cases rotating cavitation and s
cavitation surge are observed. Higher order modes occur less frequently but they do occur. Since the frequency of those 
modes are higher and may coincide with one of the resonant frequency of blade vibration. So, it is important to check that those 
modes are adequately suppressed, by carrying out experiments under all operating conditions. 

Inducers are usually with a high solidity and operated with finite incidence angle. So, they have a strong secondary flow and 
are accompanied with inlet backflow even at the design points. The shear layer between straight main flow and swirling 
backflow rolls up and causes backflow vortex cavitation. Tip leakage cavitation also occurs near the tip. These complicated 
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three dimensional cavitation will certainly affects the instabilities. These effects should be taken into account for the stability 
analysis. 
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