• Title/Summary/Keyword: Caveolin 3

Search Result 33, Processing Time 0.032 seconds

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

Clathrin and Lipid Raft-dependent Internalization of Porphyromonas gingivalis in Endothelial Cells

  • Kim, Sang-Yong;Kim, So-Hee;Choi, Eun-Kyoung;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.39 no.3
    • /
    • pp.131-136
    • /
    • 2014
  • Porphyromonas gingivalis is one of the most important periodontal pathogens and has been to known to invade various types of cells, including endothelial cells. The present study investigated the mechanisms involved in the internalization of P. gingivalis in human umbilical vein endothelial cells (HUVEC). P. gingivalis internalization was reduced by clathrin and lipid raft inhibitors, as well as a siRNA knockdown of caveolin-1, a principal molecule of lipid raft-related caveolae. The internalization was also reduced by perturbation of actin rearrangement, while microtubule polymerization was not required. Furthermore, we found that Src kinases are critical for the internalization of P. gingivalis into HUVEC, while neither Rho family GTPases nor phosphatidylinositol 3-kinase are required. Taken together, this study indicated that P. gingivalis internalization into endothelial cells involves clathrin and lipid rafts and requires actin rearrangement associated with Src kinase activation.

A simple guide to the structural study on membrane proteins in detergents using solution NMR

  • Sim, Dae-Won;Lee, Yoo-sup;Seo, Min-Duk;Won, Hyung-Sik;Kim, Ji-hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.137-142
    • /
    • 2015
  • NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF

Gene Expression Profiling of Non-Hodgkin Lymphomas

  • Zekri, Abdel-Rahman Nabawy;Hassan, Zeinab Korany;Bahnassy, Abeer Ahmed;Eldahshan, Dina Hassan;El-Rouby, Mahmoud Nour Eldin;Kamel, Mahmoud Mohamed;Hafez, Mohamed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4393-4398
    • /
    • 2013
  • Background: Chromosomal translocations are genetic aberrations associated with specific non-Hodgkin lymphoma (NHL) subtypes. This study investigated the differential gene expression profile of Egyptian NHL cases based on a microarray approach. Materials and Methods: The study included tissue samples from 40 NHL patients and 20 normal lymph nodes used as controls. Total RNA was extracted and used for cDNA microarray assays. The quantitative real time polymerase chain reaction was used to identify the aberrantly expressed genes in cancer. Results: Significant associations of 8 up-regulated and 4 down-regulated genes with NHL were observed. Aberrant expression of a new group of genes not reported previously was apparent, including down-regulated NAG14 protein, 3 beta hydroxy-delta 5-c27 steroid oxi-reductase, oxi-glutarate dehydrogenase (lipo-amide), immunoglobulin lambda like polypeptide 3, protein kinase x linked, Hmt1, and caveolin 2 Tetra protein. The up-regulated genes were Rb binding protein 5, DKFZP586J1624 protein, protein kinase inhibitor gamma, zinc finger protein 3, choline ethanolamine phospho-transferase CEPT1, protein phosphatase, and histone deacetylase-3. Conclusions: This study revealed that new differentially expressed genes that may be markers for NHL patients and individuals who are at high risk for cancer development.

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok;Lee, Hyun-Jeong;Kim, Kwondo;Caetano-Anolles, Kelsey;Jeong, Jin Young;Park, Sungkwon;Oh, Young Kyun;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.