Browse > Article
http://dx.doi.org/10.6564/JKMRS.2015.19.3.137

A simple guide to the structural study on membrane proteins in detergents using solution NMR  

Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Lee, Yoo-sup (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Seo, Min-Duk (Department of Molecular Science and Technology, Ajou University)
Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Kim, Ji-hun (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.19, no.3, 2015 , pp. 137-142 More about this Journal
Abstract
NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.
Keywords
NMR; membrane protein; detergent screening; deuteration; amino-acid selective isotope labeling; paramagnetic relaxation enhancement; residual dipolar coupling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. J. Gorczynski, J. Grembecka, Y. Zhou, Y. Kong, L. Roudaia, M. G. Douvas, M. Newman, I. Bielnicka, G. Baber, T. Corpora, J. Shi, M. Sridharan, R. Lilien, B. R. Donald, N. A. Speck, M.L. Brown, J. H. Bushweller, Chem. Biol. 14, 1186 (2007)   DOI
2 X. Huang, J. W. Peng, N. A. Speck, J. H. Bushweller, Nat. Struct. Biol. 6, 624 (1999)   DOI
3 M. A. Yildirim, K. I. Goh, M. E. Cusick, A. L. Barabasi, M. Vidal Nat. Biotechnol. 25, 1119 (2007)   DOI
4 J. P. Overington, B. Al-Lazikani, A. L. Hopkins, Nat. Rev. Drug Discov. 5, 993 (2006)   DOI
5 J. Deisenhofer, O Epp, K Miki, R Huber, H Michel, Nature 318, 618 (1985)   DOI
6 R. S. Prosser, F. Evanics, J. L. Kitevski, M. S. Al-Abdul-Wahid, Biochemistry 45, 8453 (2006)   DOI
7 J. M. Gluck, M. Wittlich, S. Feuerstein, S. Hoffmann, D. Willbold, B. W. Koenig. J. Am. Chem. Soc. 131, 12060 (2009)   DOI
8 R. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 459, 379 (2009)   DOI
9 J. Weigelt, J. Am. Chem. Soc. 120, 12706 (1998)
10 J. Lipfert, L. Columbus, V. B. Chu, S.A. Lesley, S. Doniach, J. Phys. Chem. B 111, 12427 (2007)
11 A. Galoyan, R. Srapionian, R. C. Arora, J. A. Armour, Auton. Neurosci. 92, 11 (2001)   DOI
12 P. Strop, A.T. Brunger. Protein Sci. 14, 2207 (2005)   DOI
13 B. Lorber, J. B. Bishop, L. J. DeLucas, Biochim. Biophys. Acta 1023, 254 (1990)   DOI
14 A. Chattopadhyay, E. London, Anal. Biochem. 139, 408 (1984)   DOI
15 M. Kameyama, Hokkaido Igaku Zasshi 65, 1 (1990)
16 M. T. Lin, L.J. Sperling, H. L. Frericks Schmidt, M. Tang, R.I. Samoilova, T. Kumasaka, T. Iwasaki, S.A. Dikanov, C. M. Rienstra, R. B. Gennis, Methods 55, 370 (2011)   DOI
17 A. Helenius, D. R. McCaslin, E. Fries, C. Tanford, Methods Enzymol. 56, 734 (1979)   DOI
18 F. Nilsson, O. Soderman, P. Hansson, I. Johansson, Langmuir 14, 4050. (1998)   DOI
19 R. J. Tausk, J. van Esch, J. Karmiggelt, G. Voordouw, J. T. Overbeek, Biophys. Chem. 1, 184 (1974)   DOI
20 J. J. Chou, J. L. Baber, A. Bax, J. Biomol. NMR 29, 299 (2004)   DOI
21 T. Torizawa, M. Shimizu, M. Taoka, H. Miyano, M. Kainosho, J. Biomol. NMR 30, 311 (2004)   DOI
22 R. E. Stafford, T. Fanni, E. A. Dennis, Biochemistry 28, 5113 (1989)   DOI
23 L. M. Hjelmeland, D. W. Nebert, J. C. Osborne, Jr. Anal. Biochem. 130, 72 (1983)   DOI
24 S. Park, J. Kor. Magn. Reson. Soc. 18, 47 (2014)   DOI
25 H. W. Kim, J.A. Perez, S. J. Ferguson, I. D. Campbell, FEBS Lett. 272, 34 (1990)   DOI
26 C. O'Grady, B. L. Rempel, A. Sokaribo, S. Nokhrin, O. Y. Dmitriev, Anal. Biochem. 426, 126 (2012)   DOI
27 K. I. Tong, M. Yamamoto, T. Tanaka, J. Biomol. NMR 42, 59 (2008)   DOI
28 S. M. Douglas, J. J. Chou, W. M. Shih, Proc. Natl. Acad. Sci. U S A 104, 6644 (2007)   DOI
29 D. E. Kamen, S. M. Cahill, M. E. Girvin, J. Am. Chem. Soc. 129, 1846 (2007)   DOI
30 M. Han, J. Suh, J. Kor. Magn. Reson. Soc. 19, 61 (2015)   DOI
31 J. L. Battiste, G. Wagner, Biochemistry 39, 5355 (2000)   DOI
32 W. D. Van Horn, H. Kim, C. D. Ellis, A. Hadziselimovic, E.S. Sulistijo, M. D. Karra, C. Tian, F. D. Sonnichsen, C. R. Sanders, Science 324, 1726 (2009)   DOI