• Title/Summary/Keyword: Causes of oil spills

Search Result 5, Processing Time 0.022 seconds

Overview of Major Oil Spill at Sea and Details of Various Response Actions 2. Analysis of Marine Oil Pollution Incidents in Korea (대형 기름유출사고와 방제조치에 관한 연구 2. 국내 해양 기름오염사고 분석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2013
  • In order to seize quantitative materials as part of studies on measures for oil pollution prevention and control, the statistics of oil pollution incidents in Korean coastal waters for 10 years from 2003 to 2012 were analyzed with relation to the number of oil spills and the volume of oil spilt according to causes, sources and sea areas of spills. Total number and total volume of oil spills for 10 years were found to be 2,833 cases and 17,877 kL, respectively. 50.4 %(1,429 cases) of total number of oil spills were caused by negligence, although oil spillage due to negligence was 294 kL(1.7 %). While oil spillage caused by marine accidents was 17,400 kL(97.3 %), marine accidents accounted for 27.9 %(790 cases) of total number of oil spills. While negligence had a great influence on the number of oil spills, marine accidents had a huge impact on the amount of oil spilt. Fishing boats accounted for 42.7 %(1,210 cases) of the number of oil spills, and although oil tankers accounted for 9.2 %(261 cases) of the number of oil spills, oil spillage from oil tankers was 15,488kL(86.7 %). It means that oil tankers such as VLCC or ULCC may be the main sources of major oil spills and a few very large spills are responsible for a high percentage of the amount of oil spilt. While the number of oil spill incidents was closely related to the accidents of fishing boats, the volume of oil spilt was greatly affected by the major oil spill incidents of oil tankers such as M/T Hebei Spirit. The number and volume of oil spills were shown to be 1,613 cases(56.9 %) and 3,804 kL(21.3 %) in South Sea, 700 cases(24.7 %) and 13,501 kL(75.5 %) in West Sea, and 520 cases(18.2 %) and 572 kL(3.2 %) in East Sea of Korea, respectively. The highest number of oil spills was found in South Sea and the most volume of oil spilt was shown in West Sea of Korea for 10 years.

The Legal Response and Future Tasks regarding Oil-Spill Damage to Korea - Focusing on the Hebei Spirit oil-spill (한국의 해양유류오염피해에 대한 법적 대응과 과제 - HEBEI SPIRIT호 유류유출사고를 중심으로 -)

  • Han, Sang-Woon
    • Journal of Environmental Policy
    • /
    • v.7 no.3
    • /
    • pp.89-120
    • /
    • 2008
  • With petroleum being a major source of energy in Korea, the quantity of petroleum transported via ocean routes is on its way up due to increased consumption. Due to the increase, more than 300 cases of pollution caused by petroleum occur annually. Moreover, the number of oil-spill accidents is also on the rise. Causes of such accidents, not including the disposal of waste oil on purpose, turn out to be human error during navigation or defects in the vessels, showing that most accidents are caused by humans. Therefore, to prevent future oil spills, it is imperative that navigation efficiency be enhanced by improving the quality of navigators and replacing old vessels with newer ones. Nevertheless, such improvements cannot occur overnight, so long- and mid-term efforts should be made to achieve it institutionally. As large-scale oil-spill accidents can happen at anytime along the coastal waters of Korea, it is necessary to set-up institutional devices which go beyond the compensation limit of 92FC. The current special law regarding this issue has its limits in that it prescribes compensation be supplemented solely by national taxes. Therefore, the setting-up of a new 'national fund' is recommended for consideration rather than to subscribe to the '2003 Convention for the Supplementary Fund'. It is strongly suggested that a National fund be created from fees collected from oil companies based on the risks involved in oil transportation and according to the profiteers pay principle. In addition, a public fund should be created to handle general environmental damage, such as the large-scale destruction of the ecosystem, which is distinct from the economic damage that harms the local people. The posterior responses to the large-scale oil spill have always been unsatisfactory because of the symbolic nature of the disasters included in such accidents. Oil-spills can be prevented in advance, because they are caused by human beings. But once they occur, they inflict long-term damage to both human life and the natural ecosystem. Therefore, the best response to future oil-spills is to work to prevent them.

  • PDF

Analysis of Response to Major Oil Spills in the Korean Coastal Waters

  • Yun Jong-Hwui;Yoon Yeong-Suk;Ko Seong-Jung
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.65-72
    • /
    • 2004
  • With data of historical spill from vessels occurred in korean coastal waters, the author analyze the causes of spill and evaluate response technique adopted during spill. It is found that the majority of spill caused by operational failure, bad weather, violation of navigation rule and hull defect. As a result of evaluation of response measures, it is suggested that responsible agency establishes criteria for various response options and standards of tier response time and capability according to the size of spill.

  • PDF

Establishment of Korean Environmental Sensitivity Index Map (ESI Map 구축 연구)

  • Sung H. G.;Lee H. J.;Lee M. J.;Kang C. G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.3-12
    • /
    • 2003
  • Due to the high demand on energy resources accompanied by continuing industrialization and urbanization, the world marine transportation of crude and product oils is being gradually increased. In Korea, we are exposed to the large-scale marine oil spill accidents because a very large oil tanker of 300,000 tonnage must enter Korean Ports every day to meet the domestic demand on oils. Although we are exerting our strength to reduce the probability of marine oil pollution accidents, a unrestorable oil spill is to occur owing to human errors, severe weather conditions, or combined causes. Thus, area contingency plan equipped with appropriate management system for response and restoration for the worst case discharge scenario must be entirely prepared to protect mine environments and coastal resources. In particular, we are focusing on the Environmental Sensitivity Index Map(ESI Map) to reduce the environmental consequences of both spills and clean-up efforts by specifying protection Priorities in advance and identifying in-situ response strategies. In this paper, Korean ESI Map is introduced with brief definition of sensitivity to oiling and main features of the software developed hitherto.

  • PDF

Implementation of Sensor Controller and Monitering System Using Film Type (필름형 센서를 이용한 센서 제어기 및 모니터링 시스템 구현)

  • Park, No-Jin;Lee, Ho-Woong;Yu, Hong-Kyeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Leak detection, the system is controlled by humanity's precious water resources, prepare for natural disasters and prevent damage to buildings and various industrial facilities. Especially because it causes serious environmental pollution, chemicals or oil spills, leak detection of various liquid(oil, water), the point at which the liquid leak is detected early on, and minimize environmental pollution, prevent damage of the equipment due to the leak, and the country's precious water resources to be used safely. In this paper, we solve these problems by using specialized film sensor, any person who is not a skilled technician, equipment or walls anywhere can be easily installed. also reduce unnecessary circuit, If film sensor is connected to operate, have a big competitive price, the detection of liquid and the surrounding environment according to, the sensor film that can set the sensitivity control, and monitoring system was implemented.