• Title/Summary/Keyword: Causal Reasoning

Search Result 60, Processing Time 0.03 seconds

Modeling Causality in Biological Pathways for Logical Identification of Drug Targets

  • Park, Il;Park, Jong-C.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.373-378
    • /
    • 2005
  • The diagrammatic language for pathways is widely used for representing systems knowledge as a network of causal relations. Biologists infer and hypothesize with pathways to design experiments and verify models, and to identify potential drug targets. Although there have been many approaches to formalize pathways to simulate a system, reasoning with incomplete and high level knowledge has not been possible. We present a qualitative formalization of a pathway language with incomplete causal descriptions and its translation into propositional temporal logic to automate the reasoning process. Such automation accelerates the identification of drug targets in pathways.

  • PDF

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF

Deep Reasoning Methodology Using the Symbolic Simulation (기호적 시뮬레이션을 이용한 심층추론 방법론)

  • 지승도
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1994
  • Deep reasoning procedures are model-based, inferring single or multiple causes and/or timing relations from the knowledge of behavior of component models and their causal structure. The overall goal of this paper is to develop an automated deep reasoning methodology that exploits deep knowledge of structure and behavior of a system. We have proceeded by building a software environment that uses such knowledge to reason from advanced symbolic simulation techniques introduced by Chi and Zeigler. Such reasoning system has been implemented and tested on several examples in the domain of performance evaluation, and event-based control.

  • PDF

An Extension Technique of Comparative Analysis based on Qualitative Model (정성적 모델에 기초한 비교분석의 확장 기법)

  • Kim, Hyeon Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.51-60
    • /
    • 2006
  • The goal of qualitative analysis is to capture and formalize qualitative and intuitive knowledge about physical world. Qualitative reasoning has been successfully applied to electric and mechanical mechanism domains, in which most of reasoning has focused on simulation. This paper introduces a qualitative comparative analysis technique which predicts how a change in a given situation propagates. We developed a comparative analysis technique which extends previous research by including a reasoning technique about the relative rate of the change of a parameter. Previous research focuses only on the relative change of a parameter. Causal model for the given situation is generated from qualitative domain model. The propagation by the change in causal relations are traced by applying our comparative analysis. By providing explanation as well as prediction for the given change, our technique is expected to be used in design, diagnosis, intelligent tutoring system, environmental evaluation.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

Development of an expert system for a PC's fault diagnosis using causal reasoning

  • 양승정;이원영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.23-26
    • /
    • 1996
  • 인과관계적 추론 방법(causal reasoning)은 시스템 고장을 시스템 구조나 행동의 원인 상과관계를 사용하여 분류하는 것으로서 관측된 행도오가 기대행동의 차이를 조사하여 인식하게 된다. 본 연구에서는 징후(symptom)를 분석 및 분류할 때에 시스템의 기능적인 계층구조를 이용한다. 전문가시스템의 구축은 KAPPA-PC를 사용하였다. KAPPA-PC는 규칙 및 논리에 근거한 방법과 객체지향적 지식 표현 기법을 사용한다. 대다수의 사람들이 일상적으로 사용하는 PC(Personal Computer)는, 특히 하드웨어에서 고장이 일어났을 때 수리자의 노우하우(know-how)로 고쳐지는 경우가 대부분이다. 본 논문에서는 자주 일어날수 있는 PC의 하드웨어적 고장에 일반사용자들이 쉽게 접근해서 그 원인과 진단을 내릴 수 있도록 했으며 작은 고장 원인이 전체 시스템구조내에서 어떤 상관관계를 가지는지를 고찰하였다.

  • PDF

MFM-based alarm root-cause analysis and ranking for nuclear power plants

  • Mengchu Song;Christopher Reinartz;Xinxin Zhang;Harald P.-J. Thunem;Robert McDonald
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4408-4425
    • /
    • 2023
  • Alarm flood due to abnormality propagation is the most difficult alarm overloading problem in nuclear power plants (NPPs). Root-cause analysis is suggested to help operators in understand emergency events and plant status. Multilevel Flow Modeling (MFM) has been extensively applied in alarm management by virtue of the capability of explaining causal dependencies among alarms. However, there has never been a technique that can identify the actual root cause for complex alarm situations. This paper presents an automated root-cause analysis system based on MFM. The causal reasoning algorithm is first applied to identify several possible root causes that can lead to massive alarms. A novel root-cause ranking algorithm can subsequently be used to isolate the most likely faults from the other root-cause candidates. The proposed method is validated on a pressurized water reactor (PWR) simulator at HAMMLAB. The results show that the actual root cause is accurately identified for every tested operating scenario. The automation of root-cause identification and ranking affords the opportunity of real-time alarm analysis. It is believed that the study can further improve the situation awareness of operators in the alarm flooding situation.

Modeling feature inference in causal categories (인과적 범주의 속성추론 모델링)

  • Kim, ShinWoo;Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.329-347
    • /
    • 2017
  • Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.

Design of fault diagnostic system by using extended fuzzy cognitive map (확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF