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A B S T R A C T

Alarm flood due to abnormality propagation is the most difficult alarm overloading problem in nuclear power
plants (NPPs). Root-cause analysis is suggested to help operators in understand emergency events and plant
status. Multilevel Flow Modeling (MFM) has been extensively applied in alarm management by virtue of the
capability of explaining causal dependencies among alarms. However, there has never been a technique that
can identify the actual root cause for complex alarm situations. This paper presents an automated root-cause
analysis system based on MFM. The causal reasoning algorithm is first applied to identify several possible
root causes that can lead to massive alarms. A novel root-cause ranking algorithm can subsequently be used
to isolate the most likely faults from the other root-cause candidates. The proposed method is validated on
a pressurized water reactor (PWR) simulator at HAMMLAB. The results show that the actual root cause is
accurately identified for every tested operating scenario. The automation of root-cause identification and
ranking affords the opportunity of real-time alarm analysis. It is believed that the study can further improve
the situation awareness of operators in the alarm flooding situation.

1. Introduction

Alarm system is the main method to assist operators in the control
room of nuclear power plant (NPP) in detecting process anomalies.
However, if the plant is experiencing a major transient, when hundreds
of alarms can occur at the same time, alarms may become distractions
to operators and thus reduce operators’ ability to cope with plant
abnormalities [1,2]. In other words, the alarm overloading problem
can make operators lose their situation awareness during off-normal
conditions, which will further contribute to the risk of human errors
and plant accidents. The recent digitization of control room may make
the alarm overloading situation even worse since more alarms are easily
configured [3]. The causes of alarm overloading include: i. frequently
chattering due to noise; ii. incorrectly configured alarm variables; iii.
process variables exceeding normal setpoints during mode changes
that cause momentary alarms; iv. maintenance-related alarms that may
not require actions by operators; v. abnormality propagation owing
to physical connections, i.e. cause-consequence alarms [1,4]. The last
cause is also known as alarm flood, or alarm cascade, which can be seen
as the most difficult alarm problem. Not like the other alarm overload
factors mentioned above, which are the main reasons of false alarms,
in alarm cascade all occurred alarms should be considered as correctly
tuned alarms, thus it cannot be solved by alarm reconfiguration or
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redesign. In other words, all alarms are relevant to the current plant
condition, which require operators to understand and respond [5].

Therefore, it is necessary to develop advanced alarm processing
techniques to improve usability of the alarm information and accord-
ingly situation awareness of operators during alarm floods [1,6]. Par-
ticularly, in order to eliminate impacts from abnormality propagation,
using predetermined static alarm priority levels as many of industries
are adopting, may fail to provide operators optimal results, because
the alarm priority is commonly not adapted to a specific alarm situ-
ation [1,7]. Instead, identification of root cause(s) of alarm flood and
suppression of consequential alarms have been more recommended for
alarm management [4], which is also useful in design of optimized
alarm systems [8]. Simeu-Abazi et al. [9] extend the dynamic fault
tree (DFT) with novel logic gates to filter and locate a failure from
alarms. Abele et al. [10], Cai et al. [11], Hu and Yi [12] establish
alarm models by using Bayesian networks (BNs) for the diagnosis of
alarm root causes. Wen and Chang [13] develop an alarm processing
method based on Tabu-Search (TS), which is a neighborhood search
technique, to estimate possible events that causes a specific set of
alarms. Lai and Chen [14] aim to reveal the correlations between
alarms through pattern mining, so that the optimal alignment of alarm
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sequences can be identified, which is useful to find the root causes.
Schleburg et al. [15] claim that the number of alarms presented to the
operator can be reduced by grouping related alarms as one problem.
Many researches have proven that the knowledge of plant connectivity
is important for the alarm causal analysis [16–18]. In addition, it has
been also claimed that historical data are useful for the identification
of alarm root causes. For example, Parvez et al. [19] match the real-
time alarm sequence with patterns in the alarm logs in order to early
predict the incoming alarms. Similar works that explore the historical
data can be found in Folmer et al. [20], Meng et al. [21], Zhou et al.
[22]. Temporal information of alarms has also been suggested for
the alarm root-cause analysis [23]. Laberge et al. [3] address alarm
flooding by separating alarms in a time series. Similarly, Bauer and
Thornhill [24] identify the propagation path via time delays between
variables. However, EPRI [25] indicates that the temporal information
of alarms could be probably invalidated for alarm root-cause analysis,
considering many alarms receive their time stamps not at the time of
occurrence but the time of arriving in the control room.

In this paper, alarm flood resulting from the abnormality propa-
gation is addressed by using Multilevel Flow Modeling (MFM), which
is a functional modeling methodology focusing on representing func-
tions and goals [26]. MFM provides formalized methods for creating
of qualitative representations of system objectives and functionalities,
which potentially enable the qualitative reasoning about the causal de-
pendencies among alarms. MFM has been extensively applied in alarm
management. The earliest alarm root-cause analysis based on MFM
is Larsson [27], who has included the method into a integrative model-
based diagnostic reasoning strategy with the abilities of measurement
validation and fault diagnosis [28]. The basic idea is using some generic
rules implied in the connections of functions to match with an alarm
situation, i.e. to decide which of alarms are primary, and which ones
are perhaps consequential effects of the primary alarms. Compared
to the above reviewed alarm analysis methods, MFM is in particular
appropriate for the alarm problem in NPP as well as the other complex
industrial systems, considering the following advantages:

i. MFM uses high level of abstraction makes plant knowledge
acquisition, representation and validation relatively easier thus
more viable for a complex system Larsson et al. [5].

ii. MFM is normative that describes how a system works nor-
mally, and alarms are those states deviated from the intended
model. Because MFM is not descriptive for past occurred alarm
events, it in fact can ensure the completeness within the mod-
eling boundary that every occurred alarm can be captured in
real-time [27].

iii. Unlike many data-driven approaches, which are usually lack
of explainability for the obtained results due to the black-box
nature [29], MFM offers explicit representation that helps op-
erators understand not only the alarm problem but also the
rationale of the root-cause analysis.

The original root-cause algorithm [27] has been extensively applied
in various industries where there is the issue of alarm flooding. For
instance, EPRI [25] develops an operator support system that can read
alarm data from power grid control systems and present the initiating
events and their causal alarm chains, which can help operators timely
recover from major blackouts. Ouyang et al. [30] combine results
from the MFM-based root cause analysis with the concept of ecological
interface design (EID) to develop a supervisory system, which has been
applied on a Japanese simulator of pressurized water reactor (PWR).
A pilot MFM-based alarm system has been developed within a boiling
water reactor (BWR) simulator at HAMMLAB (Halden man-machine
laboratory) in Norway [31,32].

The MFM-based alarm analysis method has been constantly refined
since developed. Dahlstrand [33] designs causal dependency graphs
(CDGs) to represent causal relationships between functions, which
are intuitive to define the causal reasoning rules. By using this new

algorithm, MFM can not only be used to separate primary alarms from
consequential alarms, but also to diagnose the root-cause faults that
may not be observed as alarms. Dahlstrand [34] introduces fuzzy logic
into MFM in order to cope with the uncertainty of root-cause reasoning
due to noisy signals. Kirchhübel et al. [35] identify causality from alarm
observations by using the new set of MFM rules developed by Zhang
[36]. An alarm root-cause analysis paradigm that is distinct from [27]
has been proposed, which is based on mutual reasoning of both cause
and consequence for every single alarm. Note that both Dahlstrand
[33] with the old algorithm and Kirchhübel et al. [35] with the new
algorithm emphasize that multiple analyses should be combined to
identify the root cause(s) that result in alarm floods. However, the
existing MFM-based alarm analysis methods have several deficiencies,
which hinder their use in real-time situations,

i. Matching patterns in alarms with predefined causal dependency
graphs is difficult to handle with complex alarm problems.

ii. Applying rules in causal reasoning does not consider reasoning
conflicts, which are easy to cause confused results.

iii. Due to the common feature of functional modeling that it nor-
mally does not give a certain result but provide many possibil-
ities [37], the root-cause analysis cannot give the accurate root
cause that actually leads to alarm flood.

This paper resents an automated root-cause analysis system based
on the cause-consequence reasoning for every single alarm. The root
causes identified by the system can either be an occurred alarm or a
fault that may not be evidenced as an observation. An algorithm is
proposed to address reasoning conflicts during the root-cause identifi-
cation. In order to further improve the situation awareness of operators
during alarm flooding situations given several possible root causes
have been provided, it is also proposed a root-cause ranking algorithm,
which can be used to isolate the actual root cause of alarm flood from
all possible candidates found by causal reasoning on the MFM model.
The validity of the novel algorithms presented in the paper is proven by
several testing operating scenarios on one of simulators constructed at
HAMMLAB called generic PWR (gPWR) simulator, which is referenced
on an operating U.S. commercial NPP [38].

The remaining parts of the paper are organized as follows: Section 2
presents the MFM-based alarm analysis method, including a brief in-
troduction of the MFM methodology, the method of alarm root-cause
identification, and the method for ranking possible root causes. The
possibility of real-time alarm analysis offered by the study will also
be discussed. The proposed alarm analysis method has been validated
on a PWR simulator. Section 3 introduces the functional modeling
process for a PWR. The case study including the experimental setups
and operating scenarios, as well as the application of alarm root-cause
identification and ranking to the resulting MFM model of PWR are
described in Section 4. A discussion of the obtained results is included
in Section 5. A summary of the paper as well as a general evaluation
of the findings is made in Section 6.

2. MFM-based alarm analysis method

This section presents the current MFM-based technique of alarm
root-cause identification, which has been applied in the real-time alarm
analysis. A set of ranking criteria are proposed, which can be used to
evaluate root-cause candidates and determine the true one that results
in the alarm flooding situation. A brief introduction to MFM will also
be provided.

2.1. Multilevel flow modeling

Multilevel Flow Modeling (MFM) is a functional modeling approach
that has been shown to be capable of capturing causal-dependencies of
complex-processes like NPP, and has been enabled automated reason-
ing [39,40], fault diagnosis [41,42] and planning for severe accident
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Fig. 1. MFM Flow functions and relations.

management [43,44]. MFM describes the function-objective structure
of a system in terms of a set of casually dependent mass and energy
flows on different levels of abstraction. MFM models provide normative
representations of a system, which describe system intentions, i.e. what
the system should do, in contrast to a quantitative descriptive model
which describes what the actual behavior of the systems is [45]. MFM is
based on a set of generic flow functions and relations that are organized
into mass, energy and control flow structures. The basic functions and
relations of the MFM methodology are shown in Fig. 1.

Causal relations between functions and objectives, which are the
most important aspects for the alarm analysis, can be separated into
three groups:

(1) Influence relations that describe dependencies between func-
tions within one flow structure.

(2) Means-end relations that describe cause–effect from functions to
objectives or across flow structures.

(3) Conditional relations that describe conditional causal dependen-
cies that are contingent on the achievement of process objec-
tives.

The causality encoded in MFM relations is defined generically and
independently of any particular domain of application. That means
that as long as the system can be modeled using MFM, it can be
evaluated using a generic set of inference rules that is tailored to the
MFM modeling language. The set of generic inference rules used in
MFM is separated into a rule-set for cause-reasoning, enabling root-
cause analysis for a given set of symptoms, and consequence-reasoning,
enabling prediction of potential effects of an observed scenario. The
specific inference results that describe a causal propagation of pro-
cess states in the system depend on three factors; the involved MFM
functions, relations and the direction of flow of the system (upstream
or downstream). A complete summary of inference rules is provided
by [36]. The application of an inference rule between two MFM func-
tions implies a propagation of a function state from a ‘‘source function’’
to a ‘‘target function’’. Valid states for the majority of the functions
presented in Fig. 1, i.e. source, sink, transport, and storage, are high, low
and normal. The barrier and balance functions are exceptions to this
convention as the barrier can assume the states normal and breach, while
balance is usually assumed that only has a normal state. A function may
correspond to a process variable set with alarm threshold(s), exceeding
of which, either in high (including breach) or low function state, can
be considered as an alarm.

2.2. Converting MFM into SDG

As mentioned above, MFM encodes the causal relations between
functions using specific propagation rules. As a result, it is possible to
tailor the graphical modeling language to facilitate modeling of specific

Fig. 2. Conversion from MFM to SDG: (a) Multilevel Flow Model of a hypothetical
process with branching causal relations and the involved propagation rules (hiflo: high
flow, loflo: low flow); (b) equivalent Signed Directed Graph representation excluding
‘‘V2’’. (In SDG, solid lines indicate positive effects, e.g. high → high, while dotted lines
indicate negative effects, e.g. high → low).

systems, while maintaining valid causal reasoning through a specifi-
cally designed set of propagation rules. Conversely, this means that the
determination of cause–effect relations in MFM models requires specific
knowledge of those MFM propagation rules, which can be inconvenient
for users who are not familiar with the modeling methodology. In order
to facilitate the causal analysis based on MFM, e.g. alarm root-cause
identification, an MFM model can be converted into a causal model that
can more explicitly describe the causal relations, i.e. signed directed
graph (SDG) [46].

SDGs can be used to describe qualitative causal models generi-
cally [47]. Mathematically, SDGs can be defined as 𝐺 = (𝑉 ,𝐸, 𝜙, 𝜓) as
defined by [48], where 𝑉 and 𝐸 represent the graphs nodes and edges,
respectively. The nodes represent system variables (or functions) and
the edges causal dependency. A qualitative state 𝜓 ∶ 𝑉 → {+, 0,−} is
assigned to each node and each directed edge has either a positive or
a negative sign 𝜙 ∶ 𝐸 → {+,−}, determining the direction of effect
between the connected nodes. The direction of the edge represents the
direction from cause to effect. SDGs can thus be viewed as causal mod-
els with a very simple rule-base, namely that positive edges preserve the
state from cause to effect, while negative edges invert it, whereas the
0 state propagates to another 0 state in either case. Reinartz et al. [46]
show that an MFM model can be converted to an SDG, as long as the
causal relations between all functions are either strictly proportional
or strictly inverse. Representing the underlying causal information in
the form of SDG enables the utilization of graph analysis methods
during model analysis. Apart from analysis, the graph representation
can be used to simplify the model in order to focus on specific functions
of interest in a diagnostic application, as the SDG representation is
not bound by MFM modeling syntax that prohibits arbitrary function
removal. Fig. 2 shows a simple example of conversion from MFM to
SDG. Since balance function is assumed as normal state, there are
eight propagation rules between three transport functions that may be
associated with process variables, which can be converted into the
equivalent SDG model. The remainder of the paper will feature both
MFM during the explanation of the modeling procedure as well as SDG
in the alarm analysis section.

2.3. Identification of alarm root causes

During alarm flooding when multiple alarms occur, identifying the
root cause(s) is about to find one or more minimal cause-consequence
trees, which can use one or a combination of as few root causes as
possible to explain as many observations as possible. To this end,
combining analysis of causes as well as consequences of individual
alarm is necessary [35]. Performing multiple alarm analyses on the
same function model, it is inevitable to encounter conflicts, e.g. distinct
states being concluded for the identical function. This section presents
how the reasoning conflicts are addressed and how all possible root
cause(s) for an alarm flooding situation can be automatically identified.
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Fig. 3. Converting the MFM model of a watermill described in Lind [49] to SDG graph. Blue and red nodes mark low (-) and high (+) states, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

2.3.1. Propagation and conflict-resolution
A modeling example of watermill from Lind [49] is used to demon-

strate how propagation and conflict are addressed in the alarm root-
cause analysis. As shown in Fig. 3(a), the MFM model describes how the
watermill can be divided into three functional levels. These functional
structures are organized in terms of means-end. For instance, grinding
of the grain is achieved by conversion of potential energy of water to
kinetic energy, which in turn requires to transport and delivery water.
As shown in Fig. 3(b), the MFM model is converted into SDG graph by
considering the propagation rules that are introduced in Section 2.1.
Converting from MFM to SDG is useful to visualize representations of
causal dependencies between modeled functions. The general principles
of the propagation rules are:

1. The relation influencer allows propagation in both directions,
i.e. positive effect from upstream to downstream while negative
effect in the opposite direction, e.g. sou1–tra1.

2. The relation participant only allows unidirectional propagation
from transport to non-transport, with either positive or nega-
tive effect depending on whether the influence source is from
upstream or downstream, e.g. tra1–sto1, and sto1–tra2.

3. In relation to the function balance, assume that all transports are
connected to balance with influencer, transports in the same side
of balance have negative effect, e.g. tra3–tra4, while transports in
the same side of balance have positive effect, e.g. tra9–tra11.

4. Means-end relations only allow unidirectional propagation from
means to end with only positive effect, e.g. tra6–tra2.

Propagating a state from one function to another typically requires
a simple application of the inference rules between both functions. For
a causal model like Fig. 3, a simple application of these reasoning rules
can lead to two different kinds of reasoning conflicts, i.e. contradictions
on parallel reasoning paths and contradictions in negative loops [50].
Handling such reasoning conflicts is one of the main challenges in the
application of causal process models, because there exists no generic
solution to resolve the conflicts. Instead, the reasoning engine must be
tailored for the specific modeling methodology it is applied to, taking
into account whether the causal model encodes precedence of certain
relations over others or not. The case of Fig. 3 has both reasoning
conflicts, which have been extracted to illustrate how the propagation
in conflicts is addressed, as shown in Fig. 4.

Contradicting parallel paths. As shown in Fig. 4(a), the propagation
is initiated by setting node tra2 to a low state, it can be observed
that nodes tra3 and sin1 can assume either negative or positive states,
depending on whether the propagation follows the path ‘‘tra2-tra3-sin1’’
or ‘‘tra2-tra4-tra3-sin1’’.

Fig. 4. Propagation results of reasoning conflicts. Using color-framed nodes to indicate
observed states and using color-filled nodes to indicate propagated states. Blue and
red nodes mark low (-) and high (+) states, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

In MFM, causal connections between variables represent potential
cause–effect relations that can, but must not necessarily take effect. This
means that the employed reasoning system must consider conflicting
parallel paths like in Fig. 4(a) as equally likely alternatives until specific
evidence confirms one or the other.

Negative loop. As shown in Fig. 4(b), the example is set for node tra9
in a high state. It becomes apparent that a propagation through the
loop would lead to a contradiction of the state of node tra9, because
the propagation ‘‘tra9-sto2-tra9’’ results in a low state for tra9, while its
observed state is a high state.

In the case of loops, positive and negative loop have to be treated
distinctly. Positive loops do not require conflict resolution, because
all evidences inside the loop are by definition consistent, whereas
negative loop introduces a conflict at the loop initiation point. Since
this introduces a conflict on a single propagation path, it cannot be
considered as an alternative propagation, as it the path contradicts
itself. In order to resolve conflicts in negative loops, the reasoning
system assumes that the initial effect on the loop initiation point takes
precedent, meaning that the propagation in the loop is only executed
up to the point where the conflict occurs.

The extended causal reasoning algorithm that results in a tree
structure of reasoning results for propagation from a single root-node is
outlined in the flow-chart in Fig. 5. It should further be noticed that it
is necessary to track all node-state pairs during propagation in order
to avoid infinite propagation in case of positive loops and merging
non-conflicting parallel paths.

2.3.2. Automated root-cause identification
By using the above algorithm to handle reasoning conflicts, the

current MFM-based causal reasoning system is able to automatically
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Fig. 5. Causal reasoning algorithm that extends the basic rule-based propagation by accounting for potential reasoning conflicts.

identify the possible root cause that can explain all occurring alarms.
Unlike the Larsson Algorithm [27] which implies that the root cause
can only be one of alarms as the root-cause alarm, it is assumed that
the root cause can be either an observation or a function state that
is not associated to any process variable. In other words, the proposed
causal reasoning algorithm is capable to identify the root cause as either
an alarm event or a specific fault that may not be set with alarms.
Fig. 6 shows the analysis result for the case shown in Fig. 3. Among
all the cause or consequence nodes deducted from two alarms, only the
tree oriented from node tra11 in positive state can explain both alarms
simultaneously. However, given an alarm flooding situation when a
large amount number of alarms are generated, the algorithm usually
generates more than one root cause in order to account all occurred
alarms even though the true root cause may be unique. Therefore, it
is necessary to determine the true root cause from all the identified
candidates.

2.4. Root-cause ranking with reward function

A reward function is applied to the trees that result from the
application of the propagation algorithm for different alarm root causes
in order to determine the root cause that describes the current set of
alarms best. Loosely defined, a probable root cause will, based on the
causal model, explain many evidences, i.e. alarms while contradiction
few or none. More precisely, the reward function needs to calculate
a quantitative value based on a given causal process model and a set
of evidences. Trying to emulate a human operators approach to causal
root-cause analysis, the reward function is based on three factors that
are typical to human reasoning about potential plant scenarios. The
human reasoning approach about root causes involves answering the
following questions:

Rule 1. How many, and which of the evidences that are observed can
be explained by the given root cause?

Rule 2. How many, and which of the evidences that are observed
cannot be explained by the given root cause?

Rule 3. How many, and which evidences would be expected to appear
but not be observed, if the given root-cause was present?

The ranking algorithm extracts this information from the propaga-
tion trees by traversing all paths from the root-node to the various
leaf-nodes of the tree. Each path is only traversed until the leaf is
reached or until a node that contradicts an evidence is encountered.
The procedure is explained in Fig. 7 for the evaluation of a hypothetical
root cause ‘‘𝛼 (-)’’. The propagation tree supports the alarm evidences
‘‘𝛼 (-), 𝛽 (-), 𝛾 (+), 𝜖 (-) and 𝜃 (-)’’, namely it results in five evidences
that can potentially be explained by the chosen root cause candidate.
Of the remaining sensors in the model, while the sensors ‘‘𝛿, 𝜅, 𝜁 𝜆, 𝜂,
𝜄’’ would be expected to show responses. The evidences ‘‘𝜖, 𝜃’’ are also
expected to show the states that contradict the evidences based on the
causal model, thus are omitted.

The following analysis section shows results for two reward func-
tions are proposed to assess the potential alarm root causes. The first
evaluates the scenarios purely based on how many evidences can be
explained by the specific root-cause candidates, i.e. Rule 1, which can
be simply be written as,

𝑅1 = 𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 . (1)

While the second penalizes the reward for additional expected
evidences that are not supported by measurements, i.e. 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (Rule
2). This reward function takes the form,

𝑅2 =
𝑛2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ⋅ 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
.(𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≠ 0) (2)

Where 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 represents Rule 3, i.e. the number of evidences that
would be expected to appear if the given root cause is presented.
Note that 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 would never be zero in reality because each root
cause is identified by backward reasoning from one of observed alarms
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Fig. 6. Identifying the minimal cause-consequence tree and root cause that can explain two alarm observations, [tra2,low] and [tra9,high]. Using color-framed nodes to indicate
observed states and using color-filled nodes to indicate propagated states. Blue and red nodes mark low (+) and high (+) states, respectively. Dotted nodes are removed by the
reasoning system due to negative loops. Solid arrows indicate the causal reasoning for node tra2, and hollow arrows are for the causal reasoning for node tra9. Green-framed node
(i.e. [tra11,high]) is the identified root cause. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

along the relations in the MFM model, there is at least one evidence
is expected for this root cause, i.e. 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ⩾ 1. However, 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
could be zero in the rare situation that an identified root cause can
explain all occurred alarms and there is no alarm that is expected
to be triggered by this root cause but not observed. It will lead to
𝑅2 → ∞, which in fact makes sense because the high ranking rate
indicates that the identified root cause is exactly the one resulting in
the current alarm situation. For the mathematical reason, it is assumed
that 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≠ 0. In the example shown in Fig. 7, it is shown that of the
total six evidences could be explained by the hypothetical root cause
‘‘𝛼 (-)’’, but that a total of eleven variables were expected to show a
deviation, resulting in 𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 5, 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 6 and 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 11. The
corresponding reward values for this root cause are thus 𝑅1 = 5 and
𝑅2 = 5 ∗ 5∕(6 ∗ 11) = 0.38.

2.5. Real-time alarm analysis

Combining root-cause identification with the reasoning algorithm
and root-cause optimization with the ranking algorithm, it is able
to provide a real-time alarm analysis. Fig. 8 demonstrates how the
developed alarm analysis system can be applied in a real-time alarm
flooding situation. Initially, root causes are identified for individual
alarm. Note that there could be cases that multiple alarms would
be traced back to the same root cause. All of identified root causes
are evaluated against the consequence reasoning results for each root
cause. The ranking algorithm can be used to provide the rate of root-
cause candidates. As the alarm list changes in a dynamic operational
scenario, different set of root causes will be found, and correspondingly
a different ranking will be given. This could imply that an additional
failure may have occurred if the fault leading to the alarm flood at the
previous moment has not been eliminated.

Fig. 7. Propagation result tree for a hypothetical root cause ‘‘𝛼 (-)’’. Using color-framed
nodes to indicate observed states and using color-filled nodes to indicate propagated
states. States that explain the alarm evidences are outlined in green. Contradictions to
explained states are outlined in purple. Blue and red indicate (-) and (+), respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3. Functional modeling of PWR

The alarm analysis method described in Section 2 is applied to a
Westinghouse-type PWR. This section presents how MFM is used for
the functional modeling of PWR. The resulting MFM model will latter
be used in the alarm root-cause analysis and ranking.

3.1. PWR

PWR is designed to include one primary cooling circuit and one
secondary circuit. The primary system uses light water as coolant and
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Fig. 8. Real-time alarm analysis.

moderator, transferring thermal energy generated by the reactor to the
secondary system. The heat exchange between the primary coolant
and the secondary coolant happens in the steam generators, where
very high temperature coolant water at the primary side runs through
internal tubes inside the steam generators, heating up the secondary
coolant water through the tube walls to generate steam. The steam
generated in the secondary system is then used to power the steam
turbine to generate electricity.

In the primary system of PWR, i.e. reactor coolant system (RCS),
a pressurizer (PRZ) is used to maintain the RCS pressure. Saturated
steam kept inside the pressurizer maintains the RCS pressure at 2235
psig during normal operation. Heaters and water sprays can be used
to increase or decrease the RCS pressure during normal operation.
Further over-pressure protection is provided through a set of power
operated relief valves (PORVs) that allow steam from the pressurizer to
be released into a pressurizer relief tank (PRT). Another function of the
pressurizer is to provide a surge volume for reactor coolant expansion
and contraction due to density changes that result from varying coolant
temperatures. The pressurizer level control is done by manipulating the
charging flow into the RCS main loops. The charging and letdown in
the RCS are also used to change the boron concentration in the RCS
to achieve reactivity control. Additionally, PWR uses banks of neutron
absorbing control rods to control the reactivity by automatically or
manually inserting or withdrawing the control rods.

For the purpose of illustration, only RCS is considered for the
functional modeling.

3.2. MFM modeling procedure

Building MFM models requires system knowledge acquisition and
a subsequent conversion of that knowledge into MFM syntax [51].
The knowledge acquisition phase should result in a comprehensive
description of the operation of the process, captured in two diagrams.
The first is function-stream diagram (FSD), which provides and abstract
representation of material, energy, and control information flows in
system. The second is objective-function tree (OFT), which captures
the relation between high-level system objectives and their low-level
realization in the process. FSD helps to identify relevant subsystems
and their relations and is subsequently used to determine the mass,
energy and control flow structures in MFM that are required to describe
that process. Further relations between flow structures based on the

information about means-end dependencies expressed in OFT are added
once the flow structures have been defined.

FSD is mainly constructed by reference of engineering drawings
such as piping and instrumentation diagrams (P&ID) and process flow
diagrams (PFDs). Converting from engineering drawings to FSD is rela-
tively easy to perform. While constructing OFT is not straightforward,
which needs to learn the operational targets or hazards, and their
means-end relationships from diverse plant documentations such as
system function descriptions, standard operating procedures (SOPs),
and results from safety assessments such as hazard and operability
studies (HAZOP) [51]. Fig. 9 shows the resulting OFT of RCS. The
primary objectives of the modeled system are the production of thermal
energy for power generation, and the leak of produced energy from
the reactor to ensure safety. It is further imperative to maintain the
integrity of the primary side to stop radioactive material from exiting
the system. These primary objectives are achieved through a number of
enabling objectives, which include maintaining coolant circulation so
the thermal energy can be transported and removed, as well as provid-
ing enough coolant for level control in the pressurizer. Further, correct
boron concentration and control rod positioning in the RCS loops to
control the reactivity have to be ensured. Another enabling objective is
to maintain the pressure in the system. As shown in Fig. 9, the enabling
objectives are further decomposed until they can be represented by
MFM functions.

3.3. MFM model of RCS

Following the above modeling procedure, the MFM model of PWR’s
RCS is built as shown in Fig. 10. The coolant material flow in the MFM
model is represented by three different MFM flow structures. ‘‘Coolant
level’’ represents the coolant stream from the charging towards the
letdown, while ‘‘Coolant loop’’ summarizes the three main coolant cir-
culations as one mass circulation. The flow structure ‘‘Pressurizer mass’’
represents the coolant in- and output to the pressurizer. The three mass
flow structures are connected by means-end relations following Fig. 9,
representing the fact that the charging provides conditions for coolant
circulation and constant coolant inventory in the system. The main
thermal energy flow from the reactor to the secondary system is repre-
sented by the energy flow structure ‘‘Energy production’’ in the MFM
model. The energy transportation in this flow structure is realized by
the means of coolant circulation. The other energy flow structure ‘‘Pres-
surizer energy’’ in the MFM model represents the pressure balances
that is influenced by the mass volume, coolant temperature, and the
system integrity. The remaining means-end relations between different
flow structures in the model also follow the means-end dependencies
in Fig. 9. The flow functions associated with the sensors where alarms
can be captured are also highlighted in the model. Table 1 shows the
description of these sensors including their operating range and alarm
thresholds.

4. Case study

In this section, the developed method is used to perform the root-
cause analysis for several emergency plant scenarios of PWR. Data
for the operating scenarios are obtained by using a full-scope PWR
simulator integrated at HAMMLAB. All presented scenarios were su-
pervised by an experienced control room operator at HAMMLAB who
issued process commands to accommodate the current plant state and
production objectives.

4.1. Scenarios

Three scenarios are investigated for the case study of alarm root-
cause analysis. All scenarios are initiated at the nominal plant operating
condition, which is very stable during fault-free operation. The process
is stable to the degree that all visually observable signal deviations
would be considered as abnormal plant behavior by a control room
operator.
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Fig. 9. OFT of RCS.

Fig. 10. MFM model of RCS of PWR. Flow functions with yellow fill indicate their associations with sensors. Functions marked with red or blue circles indicate the potential
root causes that can be identified by the MFM-based alarm analysis system (see Table 2). Red and blue indicate high (or breach specific to the barrier function) and low state,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Description of the sensors included in the process model, including their operating range and alarm thresholds.

Sensor Tag Description Unit min max Nominal Low High

TI413 Reactor coolant system - Hot leg temperature Deg F 0 700 619.98 350 650
TI410 Reactor coolant system - Cold leg temperature Deg F 0 700 557.61 300 620
LI115 Volume control tank (VCT) level % 0 100 30.74 22 34
FI122 Charging pump flow gpm 0 150 79.82 50 110
FI150 Letdown flow gpm 0 200 105.40 90 150
RC116 PORV opening percentage % 0 100 0 – –
RC103 Spray valve opening percentage % 0 100 0 – –
LI459 Pressurizer level % 0 100 60.00 50 70
LI470 Pressurizer relief tank level % 0 100 70 – –
PI455 Pressurizer pressure (channel 1) psig 1700 2500 – 2050 2250
PI472 Pressurizer relief tank pressure psig 0 120 2.49 1.00 40.00
TI463 Pressurizer relief valve temperature Deg F 50 400 112.96 90 250
TI453 Pressurizer temperature (waterspace) Deg F 100.00 700 652.28 400 680
RCP_A Reactor coolant pump (A) % 0 120 100 90.5 –

Fig. 11. Plant reaction to a leak in the pressurizer at t = 9.16 s, leading up to a reactor trip. Time in seconds on all x-axes, units of the featured sensors on the 𝑦-axis.

4.1.1. Pressurizer relief valve leak
The first scenario is regarding pressurizer relief valve leak, which

is initiated by introducing a failure, i.e. failed open to the pressurizer
relief valve on top of the pressurizer. Fig. 11 shows the plant reaction,
i.e. trends of process variables after initiating the scenario. A direct
result of the introduced failure is the removal of steam from the
pressurizer, which further affects the state of the pressurizer on the one
hand and the state of the pressurizer relief tank on the other hand.

Effect on the pressurizer. The leak of steam from the pressurizer leads
to a reduction of pressure and temperature in the pressurizer, which
subsequently results in a drop of the pressurizer level. As the pressurizer
level goes down, the charging system automatically increases charging
flow to put more water into the RCS, resulting in the decrease of the

charging system Volume Control Tank (VCT) level as a secondary effect.
Increased charging further results in a reduction of the pressurizer
water space temperature, as more water from the cold leg is fed into the
pressurizer. The decrease of the RCS pressure also results in a reduction
of the pressure-driven letdown flow (water that exits the system from
the RCS cold leg).

Effect on the pressurizer relief tank. A primary indication of the relief
valve failure is the pressurizer relief temperature, which increases as
a result of the valve failure. The increase is due to the increased
throughput of hot steam through the relief valve that causes the local
temperature to rise. The increased throughput further results in a
increase of the pressurizer relief tank level and pressure, both of which
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Fig. 12. Plant reaction to a loss of the primary charging pump at t = 145.92 s and subsequent recovery after the activation of the back-up charging pump at 233.12 s. The
reaction of FI150 is considered as a deviation which initially increases. Time in seconds on all x-axes, units of the featured sensors on the 𝑦-axis.

indicate a leak through the relief valve rather than a leak at another
location in the pressurizer.

4.1.2. Loss of the primary charging pump
The second scenario describes the effect of a complete loss of the

primary charging pump of the RCS, which can be caused by either a
mechanical pump failure or a loss of power to the pump. A summary
of the trends of affected process variables is shown in Fig. 12.

The main indicator of the pump breakdown is the complete loss of
charging flow (FI122). This loss of flow has immediate effects on the
volume control tank and pressurizer levels. The VCT level increases,
because letdown is still fed into the VCT, while the charging flow
that usually exits the VCT is lost. The pressurizer level is affected the
opposite way; Letdown flow still exits the RCS, but no new charging
flow enters, leading to a decrease of the pressurizer level. The steam
bubble in the pressurizer extends as a result of the reduced level, which
leads to a reduction of the pressurizer pressure that goes along with
the decrease of the pressurizer level. The behavior exhibited by the
letdown flow is explained by two opposing effects. Letdown cooling
is achieved in part through heat exchange with the charging flow.
A loss of charging flow thus results in a temperature increase of the
letdown, leading to a pressure increase and a resulting higher flow,
which explains the initial increase in letdown after the pump failure.
Eventually, the water in the letdown will flash to steam as a result of
the loss of cooling, resulting in a loss of letdown flow, which explains
the reduction of letdown flow after the initial increase. When charging
flow is reinstated after activation of the back-up pump, letdown cooling
is achieved through the charging flow once more, allowing a recovery
of the nominal operating condition.

4.1.3. Boric acid injection
The third scenario, which is summarized in Fig. 13, shows the

reaction of the plant to an increased injection of boric acid into the
system. Borated acid absorbs neutrons in the reactor core and thereby
reduces reactivity. The scenario can be separated into two different
effects.

Changed charging flow source. The first effect, the increase of the level
in the VCT, can be attributed to the fact that the charging flow, which
would normally be taken from the VCT, is now largely replaced by a
flow of water with a high boron concentration from a separate tank.
Because letdown flow still enters the VCT, but outflow is reduced,
the VCT level increases. This effect is a direct consequence of the
deliberate increase of boric acid that was used to generate this scenario
in the simulation. All other observed effects are a result of the reduced
reactivity that results from the insertion of boric acid. In Fig. 13 it

is shown that the increase of the VCT level is the only indication of
abnormal behavior for multiple minutes, until the effects of the reduced
reactivity become apparent.

Reduced reactivity. Reduced reactivity directly results in decreased
power production. Initial indicators of decreased power production
are the reduced cold-leg (TI410) and hot-leg (TI413) temperatures
in the system. The general temperature decrease further leads to a
reduction of the pressurizer level, which has two effects. On the one
hand it results in a reduction of the pressurizer pressure due to a
contraction of the water and subsequent expansion of the steam bubble
in the pressurizer. On the other hand, the automatic control system
tries to compensate for the loss of pressurizer level by increasing the
charging flow. The reduction of the pressurizer pressure further leads
to a reduction of the dependent letdown flow.

4.2. Analysis

The presented analysis comprises root cause analysis for the de-
scribed fault-introducing scenarios based on the method introduced in
Section 2 and the MFM model described in Section 3. The general
assumption is made that the observed abnormal events can be traced
back to a singular root cause and that the observed symptoms are
direct or indirect consequences of the actual fault. The reasoning at the
core of the analysis can be separated into three distinct steps: evidence
generation, root-cause identification and root-cause ranking.

4.2.1. Evidence generation
The introduced functional models describe the qualitative causal

dependencies between process variables. The qualitative nature of the
models means that the described propagation can also only handle
the qualitative states, which requires the conversion of quantitative
process data to qualitative evidence data that contains information
about whether the process variable is lower than expected, normal, or
higher than expected. Common approaches to achieve this conversion
involve the use of alarm thresholds. For the purpose of illustration,
the plant reactions shown in Figs. 11–13, i.e. increasing or decreasing
trends in a certain period of time are treated as high alarms or low
alarms even though they may not necessarily reach the alarm trippoints
listed in Table 1. The generated alarm evidences will be used as inputs
of the MFM-based reasoning system.

4.2.2. Root-cause identification
By applying the alarm analysis system developed based on the

method in Section 2, a scenario-free root-cause identification can be
first performed on the built MFM model of PWR, which is a causal
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Fig. 13. Plant reaction to an increased concentration of borated acid in the reactor coolant. Time in seconds on all x-axes, units of the featured sensors on the 𝑦-axis.

Table 2
List of all potential root causes identified by the MFM-based alarm analysis system and their corresponding function label in the MFM model
presented in Fig. 10.

No. Root-cause function Description Root-cause state

1 Reactivity (sou1) Changed reactivity level High output (+)
2 Low output (−)
3 Rod position (sto1) Incorrect control rod position High volume (+)
4 Low volume (−)
5 Boron conc. (sto2) Deviation of boron concentration in the RCS High volume (+)
6 Low volume (−)
7 Energy to second (tra1) Reduced energy transport to secondary system High flow (+)
8 Low flow (−)
9 RCL leak (bar1) Leak in the reactor coolant loops Breach (+)
10 RCP A (tra_RCPA) Reduced capacity/loss of reactor coolant pump High flow (+)
11 Low flow (−)
12 RC116 (tra_RC116) PORV malfunction High flow (+)
13 Low flow (−)
14 PRZ leak (bar2) Leak in the pressurizer Breach (+)
15 RC103 (tra_RC103) Spray valve malfunction High flow (+)
16 Low flow (−)
17 Heaters (tra_heaters) Heater malfunction High flow (+)
18 Low flow (−)
19 PRT valve (tra_PRT) Pressurizer relief tank valve malfunction High flow (+)
20 Low flow (−)
21 FI122 (tra_FI112) Reduced capacity/loss of charging pump High flow (+)
22 Low flow (−)
23 LI115 (sto_LI115) Low volume control tank level Low volume (−)
24 Boric acid injection (tra_BAI) Pressurizer evaporation anomaly High flow (+)
25 Low flow (−)

reasoning process assuming that each of the process variables listed in
Table 1 will produce either high or low alarm in a single system run-
ning. All possible root causes that lead to each corresponding alarm can
be obtained from the reasoning outputs, which are shown in Table A.1
in Appendix A. Note that there are many cases that the identical root
cause of an alarm appears several time. This indicates that there are
different propagation routes for the root-cause that can lead to the same
alarm eventually. When multiple alarms occur, all root causes that can
be identified for the situation are the sum of the corresponding root-
cause columns. To be summarized, there are 25 in total categories of
potential root-cause candidates that may result in any alarm situation

occurred in the plant, which are listed in Table 2. To be simplified, the
root-cause of tra2: rod insert(high/low) and the root-cause of tra3: rod
extract(Low/high) are simplified as sto1: rod position(high/low), and the
root-cause of tra4: boric injection(high/low) and the root-cause of tra5:
boric dillution(Low/high) are simplified as sto2: Boron conc.(high/low).
The actual root cause in any specific scenario must be included in
the list. A root cause typically corresponds directly to a component
malfunction, such as a valve leakage, or to a vital process abnormality,
such as reduced reactivity. For the conducted case study, the true
root cause is the failure introduced for each scenario. Therefore, the
purpose of the latter ranking work is to validate whether those failures
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Fig. 14. Root-cause ranking for the three operating scenarios.

introduced to the simulator are the root causes that produce the alarm
situations.

4.2.3. Root-cause ranking
Root causes for three operating scenarios presented in Section 4.1

are evaluated by applying the two reward functions presented in Sec-
tion 2.4. The results of the analysis and the causal trees that correspond
to the most likely root-causes are shown in Fig. 14 and Fig. 15,
respectively. For the purpose of illustration, Fig. 14 only shows the
ranking rates of the first ten identified root causes in each scenario.

Scenario 1: Pressurizer relief valve leak. The results of applying the
presented reward functions are shown in Fig. 14(a)–(b). It can be
observed that both reward function produce similar results, but that the
reward function that penalizes unexplained and not-observed evidences

leads to a stronger separation of the two most likely root-causes from
the rest. The actual root-cause, which is a leak in the pressurizer
relief valve, is correctly identified by both reward functions, as the
root-cause ‘‘RC116 (+)’’ signifies a higher than normal flow through
the relief valve. The second most likely root-cause is identified as
a leak in the pressurizer, which is logical since a leak through the
relief valve produces the same symptoms as a pressurizer leak at a
different location in the pressurizer. The distinguishing evidence that
distinguishes the two root-causes in the reasoning system is the high
level in the relief tank, which would be expected to drop with the
pressurizer level unless the leak occurred through the relief valve into
the relief tank. The other five root-cause candidates that are identified
as somewhat likely show up because of the reduced system pressure and
its dependent symptoms. In the propagation tree for the identified best
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Fig. 15. Causal tree that corresponds to the most likely root-cause for each of the presented operating scenarios, according to the automated reasoning system.

root-cause scenario ‘‘RC116 (+)’’ in Fig. 15(a), it can be seen that the
reduction of the pressurizer pressure ‘‘PI455’’ results in reactions from
four further process variables. It follows that any root-cause candidate
that influences the pressure can support at least five of the observed
evidences.

Scenario 2: Primary charging pump failure. The results of the presented
reward functions are shown in Fig. 14(c)–(d). It can be seen that the
actual root cause ‘‘FI122 (-)’’ is identified as the most likely root-cause
and that it is identified as the only truly likely root-cause by the second
rating function. However, it can also be seen that only five of the
six evidences can be explained by the causality represented in the
functional model. Specifically, the reaction of the letdown flow is not
expected, because neither the cooling effect of the charging flow on the
letdown flow nor the possibility of letdown evaporation is modeled in
the utilized causal model. Both effects are outside the current modeling
scope and can thus not be predicted correctly, resulting in a decreased
performance of the root-cause analysis for this case.

Scenario 3: Boric acid injection. The results of the application of the
presented reward functions are shown in Fig. 14(e)–(f). It can be
observed that the boric acid injection (BAI) is identified as the main
root-cause, because it is the only cause that explains both the general
reduction of energy in the system as well as the increase of the volume
control tank level. It is further noticeable that six other root-causes
explain a large amount of the observed evidences. This is explained by
the fact that a general reduction of energy in the system can be caused
by multiple factors and will produce very similar fault-signatures in
most cases. Further, the root-causes ‘‘rod pos. (+), boron conc. (+) and
reactivity (-)’’ can all be summarized as the same root-cause, since all
of them have a reduction of reactivity as a direct consequence, making
their separate mention in the analysis somewhat redundant.

5. Discussion

It has been shown that the MFM-based alarm analysis identifies the
correct root-cause for all investigated scenarios with a certain degree
of alarm flood. It is further observed that the introduction of the
number of expected evidences, i.e. 𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 as a parameter of the reward
function seems to separate the actual root-cause from other candidates
more distinctly. While this is promising, a general consideration of
the potential bias introduced by this inclusion must be evaluated in
further case studies in order to ensure the soundness of the applied
function. Combining the analysis presented in Fig. 14 and Fig. 15, it
is further observable that the distinction of the correct root-cause from

other likely candidates is achieved through the correct identification of
the primary causal dependencies. This reflects the real situation in the
control room, where operators are often quickly able to connect clusters
of specific symptoms and then proceed to investigate the true cause for
the occurrence of this cluster of evidences. This aspect of the analysis
becomes apparent when comparing the scenarios featuring the leak in
the PORV and the boric acid injection. Both exhibit similar symptoms
that point at a general loss of pressure and energy in the system, but a
clear separation is possible through the identification, that only a leak
in the PORV can result in effects on the PRT, while only boric acid
injection could lead to an increase in the VCT level in combination with
the remainder of the symptoms. It should be noted that this analysis is
only possible due to the white-box nature of the MFM-based reasoning
system. Comparing to data-driven alarm analysis methods, the obtained
transparency from MFM allows a straightforward analysis of why the
reasoning system assumes that a specific root-cause explains the current
scenario, enabling human operators to evaluate the performance and
trustworthiness of the reasoning system and to make suggestions about
further improvements.

The present work can be seen in a research stream that lever-
ages functional knowledge for the purpose of maintaining situation
awareness of operators during alarm floods. Fig. 16 illustrates how
the proposed method together with several MFM-based alarm pro-
cessing techniques developed in history can contribute to situation
awareness in different levels, and correspondingly what remaining
tasks require operators to accomplish. The early attempt of using
hierarchical information of MFM in design of human–machine interface
including alarm display can facilitate operators’ direct perception and
analytical reasoning, which can increase situation awareness from the
cognitive perspective, comparing to presenting alarm flood in poor
interfaces [52]. However, operators still need to perceive the alarm
flooding situation by themselves and perform the remaining tasks to re-
spond to events. The more advanced alarm processing is the technique
that is able to separate the root-cause alarm from many consequential
alarms, i.e. alarm classification, for example the work of Larsson [27].
Dahlstrand [33] goes a step further to diagnose the actual fault that
leads to alarm flood from the identified root-cause alarm. It is believed
that provision of root-cause ranking or optimization by this study can
further enhance the situation awareness on the basis of multiple root-
cause candidates, because operators are only required to work on the
most likely root cause(s).

The underlying assumption of alarm analysis is that a complex
alarm situation is due to one or few root causes. However, in real-time
situations like the one in Fig. 8, the developed alarm analysis system
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Fig. 16. Contributing to situation awareness in alarm flood by different MFM-based alarm processing techniques and remaining operator tasks given the corresponding technique
is provided.

cannot recognize whether the alarm flood is resulted from a single
fault or multiple faults occurred simultaneously, even though the most
likely root cause can be distinguished from less possible root causes by
applying the ranking algorithm. It is also necessary to differentiate root
causes that have the same highest ranking rate, which makes difficult
to determine the true fault.

6. Conclusions

The high-level nature and the ability of explaining causal depen-
dencies allow MFM to quickly identify the alarm root causes, which
is the key to apply in real-time alarm flooding situations. Instead of
only separating initial alarms from consequential alarms, the current
MFM-based causal reasoning algorithm is able to further diagnose the
root-cause faults that may not be directly evidenced. In order to further
improve the situation awareness of operators, given multiple root-
cause candidates have been identified by MFM, this paper proposes
a root-cause ranking algorithm, which can be used to determine the
actual root cause. The present alarm analysis method is validated by
a case study on PWR. Realistic emergency scenarios are simulated
using a full-scale plant simulator at HAMMLAB. An MFM model of
PWR is developed and utilized for automated reasoning about the
process condition in each scenario, using optimization criteria for the
reasoning system that mimic human operators decision criteria. The
reasoning results show that the MFM-based alarm analysis is capable of
identifying the correct root-cause in all tested scenarios. It is shown that
the reasoning process on the MFM model is transparent and humanly
interpretable, enabling operators and process experts to evaluate the
reasoning performance based on their own process knowledge, which
is one of the major requirements that enable this technology to be

adopted in real control rooms of NPP. The analysis further reveals that
the automated reasoning system for alarm analysis distinguishes the
most-likely root-cause from other likely candidates by correctly iden-
tifying primary evidences that are directly causally dependent on the
true root-cause, mimicking a human operator reasoning process. Future
works include considering the importance of alarm evidences. It is nec-
essary to investigate whether secondary-priority and tertiary-priority
evidences should be valued equally to primary-priority evidences, as
has been done in this study, or whether better diagnostic performance
can be achieved by considering them distinctly. This issue is vertical
for the root-cause identification and ranking method to be applied in
the real-time alarm analysis.
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Appendix A. Root causes identified for each single alarm observa-
tion

See Table A.1

Table A.1
Root causes identified for each single alarm evidence observed for the sensors listed in Table 1.

Root TI413 TI410 LI115 FI122

Cause High Low High Low High Low High Low

#1 reactivity High LI115 Low LI115 Low reactivity High reactivity Low reactivity High reactivity High LI115 Low
#2 tra3 High reactivity Low reactivity Low tra3 High reactivity Low reactivity High reactivity High reactivity Low
#3 heaters High tra3 Low tra3 Low heaters High reactivity Low reactivity High reactivity High reactivity Low
#4 heaters Low heaters High heaters Low tra5 High tra3 Low tra3 High tra3 High reactivity Low
#5 tra5 High heaters Low FI122 Low FI122 High tra3 Low tra3 High tra3 High tra3 Low

(continued on next page)
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Table A.1 (continued).
#6 FI122 High FI122 Low RC116 Low RC116 High tra3 Low tra3 High tra3 High tra3 Low
#7 RC116 High RC116 High tra2 High tra2 Low heaters Low heaters High heaters High tra3 Low
#8 RC116 Low RC116 Low tra5 Low tra4 Low heaters Low heaters High heaters High heaters Low
#9 tra2 Low tra2 High tra4 High BAI Low heaters Low heaters High heaters High heaters Low
#10 tra4 Low tra5 Low BAI High RC103 Low FI122 Low tra5 High tra5 High heaters Low
#11 BAI Low tra4 High bar1 Breach RC103 Low RC116 Low tra5 High tra5 High RC116 Low
#12 RCP_A Low BAI High bar1 Breach bar2 Breach RC116 Low tra5 High tra5 High RC116 Low
#13 RCP_A Low RCP_A High RC103 High RC116 Low FI122 High FI122 High RC116 Low
#14 tra1 Low RCP_A High RC103 High tra2 High RC116 High RC116 High FI122 Low
#15 bar1 Breach tra1 High tra2 High RC116 High RC116 High tra2 High
#16 RC103 High bar1 Breach tra2 High RC116 High RC116 High tra2 High
#17 RC103 Low bar1 Breach tra5 Low tra2 Low tra2 Low tra2 High
#18 RC103 Low RC103 High tra5 Low tra2 Low tra2 Low tra5 Low
#19 bar2 Breach RC103 High tra5 Low tra2 Low tra2 Low tra5 Low
#20 RC103 Low tra4 High tra4 Low tra4 Low tra5 Low
#21 bar2 Breach tra4 High tra4 Low tra4 Low tra4 High
#22 bar2 Breach tra4 High tra4 Low tra4 Low tra4 High
#23 BAI High BAI Low BAI Low tra4 High
#24 BAI High BAI Low BAI Low BAI High
#25 BAI High BAI Low BAI Low BAI High
#26 BAI High BAI Low RCP_A Low BAI High
#27 RCP_A High RCP_A Low RCP_A Low RCP_A High
#28 RCP_A High RCP_A Low RCP_A Low RCP_A High
#29 RCP_A High RCP_A Low RCP_A Low RCP_A High
#30 RCP_A High RCP_A Low RCP_A Low RCP_A High
#31 RCP_A High RCP_A Low RCP_A Low RCP_A High
#32 RCP_A High RCP_A Low tra1 Low RCP_A High
#33 tra1 High tra1 Low tra1 Low tra1 High
#34 tra1 High tra1 Low tra1 Low tra1 High
#35 tra1 High tra1 Low bar1 Breach tra1 High
#36 RC103 High bar1 Breach bar1 Breach RC103 High
#37 RC103 High bar1 Breach bar1 Breach RC103 High
#38 RC103 High bar1 Breach bar1 Breach RC103 High
#39 RC103 High bar1 Breach bar1 Breach RC103 High
#40 bar1 Breach bar1 Breach
#41 bar1 Breach RC103 Low
#42 RC103 Low RC103 Low
#43 RC103 Low RC103 Low
#44 RC103 Low RC103 Low
#45 RC103 Low bar2 Breach
#46 bar2 Breach bar2 Breach
#47 bar2 Breach bar2 Breach
#48 bar2 Breach bar2 Breach
#49 bar2 Breach bar2 Breach
#50 bar2 Breach

Root FI150 RC116 RC103 LI459

Cause High Low High Low High Low High Low

#1 reactivity High reactivity Low RC116 High RC116 Low RC103 High RC103 Low reactivity Low reactivity High
#2 tra3 High tra3 Low reactivity Low reactivity High
#3 heaters High heaters Low reactivity Low reactivity High
#4 tra5 High tra2 High tra3 Low tra3 High
#5 tra2 Low tra5 Low tra3 Low tra3 High
#6 tra4 Low tra4 High tra3 Low tra3 High
#7 BAI Low BAI High heaters Low heaters High
#8 RCP_A Low RCP_A High heaters Low heaters High
#9 RCP_A Low RCP_A High heaters Low heaters High
#10 tra1 Low tra1 High RC116 Low tra5 High
#11 bar1 Breach RC103 High RC116 Low tra5 High
#12 RC103 Low RC116 Low tra5 High
#13 tra2 High RC116 High
#14 tra2 High RC116 High
#15 tra2 High RC116 High
#16 tra5 Low tra2 Low
#17 tra5 Low tra2 Low
#18 tra5 Low tra2 Low
#19 tra4 High tra4 Low
#20 tra4 High tra4 Low
#21 tra4 High tra4 Low
#22 BAI High BAI Low
#23 BAI High BAI Low
#24 BAI High BAI Low
#25 RCP_A High RCP_A Low
#26 RCP_A High RCP_A Low
#27 RCP_A High RCP_A Low

(continued on next page)
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Table A.1 (continued).
#28 RCP_A High RCP_A Low
#29 RCP_A High RCP_A Low
#30 RCP_A High RCP_A Low
#31 tra1 High tra1 Low
#32 tra1 High tra1 Low
#33 tra1 High tra1 Low
#34 RC103 High bar1 Breach
#35 RC103 High bar1 Breach
#36 RC103 High bar1 Breach
#37 RC103 High bar1 Breach
#38 bar1 Breach
#39 bar1 Breach
#40 RC103 Low
#41 RC103 Low
#42 RC103 Low
#43 RC103 Low
#44 bar2 Breach
#45 bar2 Breach
#46 bar2 Breach
#47 bar2 Breach
#48 bar2 Breach
#49
#50

Root LI470 PI455 PI472 TI463

Cause High Low High Low High Low High Low

#1 PRT valve Low PRT valve High reactivity High LI115 Low RC116 High RC116 Low RC116 High RC116 Low
#2 RC116 High RC116 Low reactivity Low reactivity High bar2 Breach
#3 bar2 Breach tra3 Low reactivity Low
#4 tra3 High tra3 Low
#5 heaters High tra3 High
#6 heaters Low heaters High
#7 tra5 High heaters Low
#8 RC116 High tra5 High
#9 RC116 Low RC116 High
#10 tra2 High RC116 Low
#11 tra5 Low tra2 High
#12 tra4 High tra5 Low
#13 tra2 Low tra4 High
#14 tra4 Low tra2 Low
#15 BAI High tra4 Low
#16 BAI Low BAI High
#17 RCP_A High BAI Low
#18 RCP_A High RCP_A High
#19 RCP_A Low RCP_A High
#20 RCP_A Low RCP_A Low
#21 tra1 High RCP_A Low
#22 tra1 Low tra1 High
#23 bar1 Breach tra1 Low
#24 RC103 High bar1 Breach
#25 RC103 Low bar1 Breach
#26 RC103 Low bar1 Breach
#27 bar2 Breach RC103 High
#28 RC103 High
#29 RC103 Low
#30 bar2 Breach
#31 bar2 Breach
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50

(continued on next page)
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Table A.1 (continued).
Root TI453 RCP_A

Cause High Low High Low

#1 reactivity High LI115 Low RCP_A High RCP_A Low
#2 tra3 High reactivity Low
#3 heaters High tra3 Low
#4 tra5 High heaters Low
#5 FI122 High FI122 High
#6 RC116 High RC116 Low
#7 tra2 Low tra2 High
#8 tra4 Low tra5 Low
#9 BAI Low tra4 High
#10 RCP_A Low BAI High
#11 RCP_A Low RCP_A High
#12 tra1 Low RCP_A High
#13 bar1 Breach tra1 High
#14 RC103 Low bar1 Breach
#15 RC103 Low bar1 Breach
#16 bar2 Breach RC103 High
#17 RC103 High
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48
#49
#50
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