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ABSTRACT: The diagrammatic language for path-
ways is widely used for representing systems knowledge
as a network of causal relations. Biologists infer and hy-
pothesize with pathways to design experiments and verify
models, and to identify potential drug targets. Although
there have been many approaches to formalize pathways
to simulate a system, reasoning with incomplete and high
level knowledge has not been possible. We present a qual-
itative formalization of a pathway language with incom-
plete causal descriptions and its translation into propo-
sitional temporal logic to automate the reasoning pro-
cess. Such automation accelerates the identification of
drug targets in pathways.

1 INTRODUCTION

The diagrammatic language of biological pathways repre-
sents the systems knowledge of a biological process, or a
collection of related causal relations. Biologists use path-
ways to represent not only their current understandings
but also hypotheses of the system. Furthermore, infer-
ence over the pathways gives rise to new pieces of knowl-
edge about and insight into the biological process.

Despite efforts to standardize the diagrammatic lan-
guage for pathways [1, 2, 3, 4], the resulting proposals
are not yet widely used in the biological field. Most of
these efforts aim to mathematically model the pathways,
and focus on the complete description and simulation of
the system. Nevertheless biologists still use an informal
representation for pathway, called in this paper informal
pathways. It is because the biological knowledge is still
incomplete and insufficient for full simulation (5], and the
causality of other levels cannot be naturally incorporated
into these standardized pathway languages. Nonethe-
less, biologists are still able to understand, communicate,
hypothesize and reason with informal pathways as fre-
quently observed from the literature.

The mixture of complete mechanical knowledge and
qualitative causal knowledge is both represented in the
informal pathways. The use of pathways in modeling
the current knowledge from experiments and hypothe-
sizing for the next experiment is common in biology [6].
Causality is a critical component to the iterative cycle
of experiment and modeling. In addition, informal path-
ways are used to model the cause of a disease and to pre-
dict plausible drug targets. This part of drug discovery
process heavily relies on the causal relations for a com-

pact and flexible reasoning rather than on the complete
mechanical knowledge [7].

In this paper, we propose an expressive pathway lan-
guage that combines different levels of causal knowledge,
and a logical inference system that mimics the inferences
on the pathway as performed by the biologists.

2 CAUSAL PATHWAY

Instead of the complete molecular description, the infor-
mal pathway contains indirect causal relations, namely,
induction and inhibition. Induction of an event is a gen-
eral positive regulation and its inhibition is a general
negative regulation. Although some molecules or inter-
actions may be underlying the induction or inhibition,
this partial information is still useful for qualitative rea-
soning. The pathway language we propose in this paper
is a hybrid of molecular level interactions and high level
concepts to represent the informal pathways as used by
the biologists.

Notation Yl'l)"jyl')isZ_— Description

III SE | Biological process
@ SEM | Molecule (non-external)
@ SE | External control or disease

x —%—> y|O|M| SE | Modification to molecule

X «<—%—> v|M|M|SEM| Binding

x —%>y|S{E| E | Induction

x —e— v|S|E| E | Inhibition

x—e—=7v |S|E Necessary condition

x —e—»v|S|S| E | Conversion

Table 1: Notations and corresponding type constraint
used in the pathway. S is for states, E for events, O for
modifications, and M for molecules.

The notation used in this paper is motivated by the
Kohn interaction map {1, 5]. However, there are some
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unification of the symbols for a simpler description and
clarifications for unambiguous semantics. The basic sym-
bols are defined in Table 1. Each node and edge is as-
signed a set of types, and the edges in a pathway are
connected with respect to these types. For an edge to
be connected, each end node should be a fragment of a
well-formed pathway, so that there would be no infinitely
recursive structure.!

Unlike pathway languages that concentrate only on
molecular interactions, our approach also introduces non-
causal higher level concepts such as diseases, experimen-
tal conditions, and biological processes. These higher
level concepts often fill the gap among the molecular
states that would be otherwise considered unrelated at
the molecular level.

In Figure 1, we reconstructed the pathway of (8] using
our notation that explains the experimental results. The
pathway explains how estrogen receptor negative (ER-)
breast cancer cells show an enhanced proliferation and
how each experiment disturbs the process. A sequence
of induction and inhibition from EGFR to cell prolifera-
tion and the possible external control of the sequence by
several drugs demonstrate the causal chaining that was

modeled by the biologists.
Cancer
V
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Proliferation
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Figure 1: A pathway for the mechanism of ER(-) breast
cancer. The roman numbers are for future reference.

3 ANALYSIS OF CAUSAL INFER-
ENCE

The chain of causal inference from EGF and breast can-
cer to cell proliferation, which implies that the pathway
is abused by the cancer, can be obtained by using some
informal rules of inference over the pathway. We assume
that each state or event can be either present or absent;
a present state or event means that the biological system

1Both ends of an edge should be fully instantiated without the

edge. For example, connections such as —/ are meaningless in a
pathway diagram.

contains the corresponding physical state or event inde-
pendent of other states or events, and the converse for
an absent state or event. For example, if we say that the
state for phosphorylated PIK3 is present, the biological
system currently contains phosphorylated PIK3, and it
is independent of the presence of other states such as a
state for phosphorylated EGFR which might be absent
at the moment.

To represent the initial condition, each symbol for a
state has a predefined semantics. Initially, the round-
boxed molecules except for ccD1 in Figure 1 are assumed
to be present since their presence is independently mo-
tivated. And the presence of the ovals is undetermined,
since they can be controlled externally. This can be en-
coded into the following rule.

Rule 1 (Environment Assumption)

1. When a non-ezternal molecule A is not a target of
any induction or inhibition, the molecule is initially
present.

2. When a disease or external control or a molecule is
a target of any induction or inhibition, it is initially
not present.

3. Otherwise, the presence of the states is not initially
determined. (Undetermined states)

For a clear representation, obvious necessary condi-
tions for events, that is the presence of the participants
that is implied in the diagram, are omitted. For example,
the binding of EGF and EGFR would require the pres-
ence of both EGF and EGFR, and the induction of the
phosphorylation of PI3K by EGFR requires the presence
of EGFR.

Rule 2 (Implicit Necessary Condition) The
presence of participants of a state or event is a neces-
sary condition for the state or event.

Intuitively, direct inductions and inhibitions can be
chained to entail indirect conclusions. For example, the
signaling path along the kinases, EGFR, PI3K, PKC and
IKK, is connected via consecutive inductions, and the
first induction entails the last induction, so that the sig-
nal is transmitted through phosphorylated states. The
next rule states the generalization of the idea.

Rule 3 (Chaining of Induction and Inhibition)
Assuming X and Y have no other induction, inhibition
or necessary condition for X or Y,

e if induction of X by Y is induced by Z, then X is
indirectly induced by Z in the presence of Y;

o if inhibition of X by Y is induced by Z, then X is
indirectly inhibited by Z in the presence of Y;

e if induction of X by Y is inhibited by Z, then X is
indirectly inhibited by Z in the presence of Y; and

o if inhibition of X by Y is inhibited by Z, then X is
indirectly induced by Z in the presence of Y.
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However, in a general network of induction, inhibition,
and necessary condition, the multiplicity of the connec-
tions prevents the direct application of Rule 3. The gen-
eral dynamic property concerning the causal relation can
be given by the following rule. Rule 3 is a special case of
Rule 4.

Rule 4 (Dynamics Inference)
e State or event Y will be present if

1. for some X that induces Y, X is present,
2. for all Z that inhibits Y, Z is absent, and

3. for all necessary condition P for Y, P is
present, and

e State or event Y will be absent if

1. for at least one X that inhibits Y, X is present,
and

2. for at least one X that is a necessary condition
for Y, X is not present.

For example, the state for phosphorylated pRb will be
present if CDK4 and ccD1 binds, and the state for bind-
ing of E2F and pRb will be absent (disassociated), if pRb
is phosphorylated, marked as (i) and (ii), respectively, in
Figure 1.

While some of the states change, there are also static
states. Unless there is any reason to change the presence
of the state, it remains unchanged.

Rule 5 (Inertia) Once a state became present by Rule
4, it remains present unless it is interfered.

Using these informal rules, it is possible to infer that
the breast cancer cells will proliferate and that the in-
hibitory drugs or experiments will block this effect, and
therefore, to discover that the molecules involved in the
pathway are potential drug targets used in the experi-
ment and that the drugs could be hypothesized as a cure
for the cancer.

4 TRANSLATION INTO PROPOSI-
TIONAL TEMPORAL LOGIC

The informal rules allow informal inferences; however,
translation into a well founded logic provides a concrete
semantics and automated theorem proving. Moreover,
the inference over a pathway is non-monotonic, in the
sense that newly introduced edges can make a valid in-
ference invalid, which generally makes the inference sys-
tem complex. In order to deal with non-monotonicity,
our approach is to assume a closed world, and to trans-
late expressions in the pathway language into ones in a
monotonic logic, propositional temporal logic (PTL).
Modeling causality with logic has been a difficult prob-
lem [9], and there have been many modal logic approaches
such as counterfactuals [10], dynamic logic [11], and ac-
tion logic [12]. Since the causality in the biological do-
main is more restricted and precise than the general

causality, it may be modeled through a simpler frame-
work, especially temporal logic which is widely used to
represent the temporal relationships.

The basic syntax of PTL with which we will be trans-
lating pathways is briefly defined below with proposi-
tional symbols and formulas. A propositional symbol
will denote a state, and a formula represents an asser-
tion about the temporal and logical relation among the
states and events. Three modal operators, next time (QO),
sometime in the future (¢) and always in the future (0),
are used.

Definition 1 (Proposition Symbols) Let M be the
set of molecules, EC the set of external controls, and
BP the set of biological processes of a pathway. The set
of propositional symbols for the pathway, P, is defined as
follows.

P =MU{Ap|A € M}U{BIND4 p|A, B € MJUECUBP

Ap denotes a phosphorylated species of a molecule A4,
and BIND 4 p denotes a bound species of two molecules
A and B. Phosphorylation on multiple sites and molecule
complexes with more than two molecules are not consid-
ered, since they do not significantly change the reasoning
and it is easy to extend the symbols to cover them. How-
ever, our representation will suffer from the combinatorial
increase of states when these notions are included as in
other representations.

Definition 2 (Formulas) F € P is an atomic for-
mula of PTL, and if Fi and F3 are formulas of PTL,
OFl,()Fl,DFl,Fl ANEy) F V Fy -F,F; D Fy are also
formulas of PTL.

The translation function maps the pathway fragments
to PTL formulas. Since a pathway fragment has a non-
recursive finite structure, the translation function gener-
ates a finite formula. The process can be divided into
two recursive functions; atomic translation which maps a
state or conversion to a formula, and causal translation
which maps a state or event to a formula.

Definition 3 (Atomic Translation Function)

The atomic translation function (-) from a state or con-
version of a pathway to a PTL formula is defined as the
following table.

| 7

L
FH[BO) X
P —e—> Y Yp
X <> Y BINDx y
X —> Y | XOO(-XAY)

In an atomic translation, a complex state is resolved
to a propositional symbol and a conversion is resolved to
a dynamic property. In a causal translation, the causal
relations among the nodes are resolved, using a conjunc-
tion of four assertions corresponding to Rules 4 and 5.
Rule 2 is assumed to be contained in the pathway before
the translation.
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Definition 4 (Causal Translation Function)

The causal translation function (-) from a state or event
X of a pathway to a PTL formula is defined as follows.

1. If X is a state or conversion, and no induction, in-
hibition, or necessary condition is connected to X,

X=X,

2. If X is an induction, inhibition, or necessary condi-
tion from Y, and no induction, inhibition, or neces-
sary condition is connected to X, X =Y,

3. Otherwise,

\,,

S 2

/1\ X :

AP
Fp. ... BA

f=(ﬁ(VE)A(A§;)A(Y6’;) > 0X)A

((\/JE)V(ﬁ/\E) > 0-X)A

(ﬂX'Aﬂ(ﬂ(\/E)A(Z/_\E)A(\/J@)) > O-X)A
z J k > 0OX)

XA~/ A) vV (= \By)

The pathway is translated into a formula containing
all the static rules and dynamic rules of the pathway via
the causal translation function. An explanation is forth-
coming in 5.2 example. The initial conditions from Rule
1 are stated in the initial condition clause and the other
rules are stated as a conjunction of translated states.

Definition 5 (Initial Condition Clause) Let {TI;}
and {FI;} be the set of propositional symbols correspond-
ing to Rule 1.1 and 1.2, respectively, given a pathway.
The initial condition clause ICC is defined as follows.

1cC = ANTLA N -FI;
i 3

Definition 6 (Pathway Formula) The pathway for-
mula, PATHW AY', for a pathway is defined by the fol-
lowing formula,

PATHWAY =ICCAN\X;

where X; is an undetermined state or conversion of the
pathway.

Properties in question about the pathway can be ex-
amined by checking for the validity of a correspond-
ing formula. Since the satisfiability problem of PTL is
PSPACE-complete [13], and the validity of a given for-
mula can be done by checking for the satisfiability of

the negation of the formula, they have the same com-
plexity. Although most of the tautologies are vacuous
without any biological meaning, the formulas of the form
PATHW AY D X contain the properties represented by
X.

5 RESULTS

5.1 Biological background

Recently, the inhibitor of PARP-1, which is involved in
single strand break repair (SSBR), a DNA repair mecha-
nism, is hypothesized and examined as a cure for breast
cancer [14, 15]. Since only the cancer cells express the im-
paired BRCA1 gene, which is involved in double strand
break repair (DSBR) via homologous recombination, the
cells are unable to repair the DSBs. When the PARP1
inhibitor is treated, the SSB repair system malfunctions
and more DSBs take place. Consequently, the treatment
of the PARP1 inhibitor causes more DSBs to occur in
cancer cells compared to normal cells, and the DSBs re-
sult in apoptosis selectively on cancer cells.

This sequence of reasoning process is interesting in that
it involves non-trivial condition resolution. This pattern
of reasoning could not easily done by other frameworks,
and is also difficult to discover by the biologists when the
size of the involved pathway is huge. The pathway that
models the reasoning is shown in Figure 2. The details of
the pathway unrelated to the reasoning we are focusing
on are omitted for space reasons.

DNA Single Strand

DNA Single Strand
Break Repair — L

Break

|

Breast BRCA1 DNADouble Strand DNA Double
Cancer Break Repair Strand Break
Apoptosis

Figure 2: A high level DNA repair pathway related to
breast cancer. The drug used as the inhibitor of PARP-1
is denoted as an external control X.

5.2 Translation and Inference

The translation of the pathway is straightfor-
ward. First, since there are no states corre-
sponding to initial condition clause, it is empty
and vacuously true. The remaining states
{PARP1,SSBR,SSB, BRCAl, DSBR, DSB, Apoptosis}
are then translated into PATHWAY. For example,
DSB is translated into the following formula.

-376 -



(SSB A~DSBR > 0DSB)
A(DSBR > 0~DSB)
A(~DSB A ~(SSB A~DSBR) > O~DSB)
N(DSB A~DSBR > ODSB)

The partial translation above asserts that (a) the oc-
currence of single strand breaks to DNA without double
strand break repairing would eventually give rise to dou-
ble strand breaks, (b) the double strand break repair will
prevent double strand breaks, (c) the absence of double
strand breaks will continue if single strand breaks are ab-
sent or double strand break repairing is at work, and (d)
the presence of double strand breaks will continue if there
is a problem with double strand break repairing.

PATHWAY D
(X A BreastCancer D QApoptosis) (1)

PATHWAY D
(X A -BreastCancer D O-Apoptosis) (2)

From the fully translated PATHW AY, we can infer
the facts (1) and (2). (1) asserts that treating X to a
breast cancer cell would eventually lead to apoptosis, and
(2) asserts that treating X to a normal cell without breast
cancer would not eventually lead to apoptosis. Thus we
can conclude that X can selectively induce apoptosis on
breast cancer cells, as predicted. The framework can
support the identification of a drug target with a given
pathway either by a fully automatic or semi-automatic
hypothesis generation and verification.

6 CONCLUSION

We proposed a framework that mimics the reasoning of
biologists on their pathway. Causal knowledge of mixed
levels is represented in an unambiguous pathway lan-
guage, and is translated into PTL for automated rea-
soning. The pathway language can naturally represent
the incomplete causal knowledge and include high level
concepts.

The primary focus of examples in this paper is on drug
discovery. The reasoning process of the identification of
drug targets and potential drugs is reconstructed and ver-
ified. The framework can also be applied to an automated
experiment design system such as [16] for hypothesis gen-
eration and verification.

Pathway databases such as KEGG [17] or REAC-
TOME (18] contain a lot of useful data. However, since
they do not contain most of the high level causalities
that our system can utilize, it is necessary to construct
pathways from other sources. Since the pieces of causal
knowledge are experimental results, they are reported in
the literature as diagrams and in natural language. Us-
ing information extraction systems such as BiolE [19] to
construct causal pathways and automated knowledge dis-
covery is one of our next goals.
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