• Title/Summary/Keyword: Cauchy stress

Search Result 32, Processing Time 0.063 seconds

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

FEM Analysis for Performance Evaluation of Seal in Universal Joint Bearing (유니버설 조인트 베어링용 Seal의 성능평가를 위한 유한요소해석)

  • 김태완;문석만;구영필;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • Seals in universal joint bearing are a important component reinforcing lubrication performance by holding a lubricant and preventing infiltration of dust, moisture, etc. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for the lib type seal and O-ring type seal, FEM analysis are conducted using Mooney-Rivlin Model. The results are indicate that O-ring having higher contact stress and larger contact area than lib type is more profitable.

  • PDF

Numerical Implementation of Modified Coulomb-Mohr Yield Criterion for Anisotropic and Asymmetric Materials

  • Lee Myoung-Gyu;Kim Ji-Hoon;Ryou Han-Sun;Chung Kwan-Soo;Youn Jae-Ryoun;Kang Tae-Jin
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • Development and numerical implementation for an elastoplastic constitutive model for anisotropic and asymmetric materials are presented in this paper. The Coulomb-Mohr yield criterion was modified to consider both the anisotropic and asymmetric properties. The modified yield criterion is an isotropic function of the principal values of a symmetric matrix which is linearly transformed from the Cauchy stress space. In addition to the constitutive equation, the numerical treatment for the singularity in the vertex region of yield surface and stress integration algorithm based on elastoplasticity were presented. In order to assess the accuracy of numerical algorithm, isoerror maps were considered. Also, extension of a strip with a circular hole was simulated and results compared with those obtained using the (smooth) Mises yield criterion to validate stress output for a complex stress state.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.

Shape Design Optimization of Disk Seal in $SF_6$ Gas Safety Valve ($SF_6$ 가스 안전밸브 디스크 시일의 최적설계에 관한 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2004
  • Sulfur Hexafluoride, S $F_{6}$ is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. S $F_{6}$ gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in S $F_{6}$ gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in S $F_{6}$ gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon $^{ }$PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the S $F_{6}$ gas leakage in the safety valve.afety valve.

Evaluation of $J_k$ integral for a plane crack in a rectilinear anisotropic body (선형 이방성 평면 균열에서의 $J_k$ 계산)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1792-1798
    • /
    • 1991
  • In this paper the path independent $J_{k}$(k=1, 2) integrals are evaluated in a rectilinear anisotropic body for two dimensional case. The relationship among elastic constants are examined. Using those relationship the expression of $J_{2}$ Integral in terms of $K_{I}$ is found to be very simple.e.e.