• Title/Summary/Keyword: Cathode polarization

Search Result 148, Processing Time 0.023 seconds

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

Effect of the A-site Deficieny of ABO3 type (La0.75Sr0.25)1-xFeO3-δ Used as Cathode Materials for SOFC on the Electrode Properties (고체산화물 연료전지의 공기극용 ABO3구조의 (La0.75Sr0.25)1-xFeO3-δ의 A-site변화에 따른 전극 특성 연구)

  • Park, Ju-Hyun;Lee, Seung-Bok;So, Hui-Jeong;Lim, Tak-Hyoung;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • We synthesized and investigated $(La_{0.75}Sr_{0.25})_{1-x}FeO_{3-\delta}$ perovskite oxides having different stoichiomety (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The electrochemical performances of the synthesized powders were investigated by AC impedance spectroscopy. Both the electric conductivity and the electrochemical performance showed the highest properties at the stoichiometry x = 0.02. Finally, we concluded that the variation of A-site deficiency results in the variation of the amount of oxygen vacancy and micro structure, which leads to the variation of electric conductivity and polarization resistance.

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma (산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성)

  • Seoyeong Cheon;Naeun Ha;Chaehun Lim;Seongjae Myeong;In Woo Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.534-540
    • /
    • 2023
  • The high-rate performance is limited by several factors, such as polarization generation, low electrical conductivity, low surface energy, and low electrolyte permeability of CFX, which is widely used as a cathode active material in the lithium primary battery. Therefore, in this study, we aimed to improve the battery performance by using carbon fluoride modified by surface treatment using oxygen plasma as a cathode for lithium primary batteries. Through XPS and XRD analysis, changes in the surface chemical characteristics and crystal structure of CFX modified by oxygen plasma treatment were analyzed, and accordingly, the electrochemical characteristics of lithium-ion primary batteries were analyzed and discussed. As a result, the highest number of semi-ionic C-F bonds were formed under the oxygen plasma treatment condition (7.5 minutes) with the lowest fluorine to carbon (F/C) ratio. In addition, the primary cell prepared under this condition using carbon fluoride as the active material of the cathode showed the highest 3 F/C(3 C rate-performance) rate-performance and maintained a relatively high capacity (550 mAh/g) even at high rates. In this study, it was possible to produce lithium primary batteries with high-rate performance by adjusting the fluorine contents of carbon fluoride and the type of carbon-fluorine bonding through oxygen plasma treatment.

Performance Characteristics of PEMFC by flow Configurations and Operating Condition (유로형상 및 운전조건에 따른 고분자 전해질 연료전지의 성능 특성)

  • Lee, Pil-Hyong;Cho, Son-Ah;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3440-3445
    • /
    • 2007
  • For proton exchange membrane fuel cell, it is very important to design the flow channel on separation plate optimally to maximize the current density at same electrochemical reaction surface and reduce the concentration polarization occurred at high current density. In this paper, three dimensional computation model including anode and cathode domain together was developed to examine effects of flow patterns and operation conditions such as humidity and operating temperature on performance of fuel cell. Results show that voltage at counter flow condition is higher than that at coflow condition in parallel and interdigitated flow pattern. And fuel cell with interdigitated flow pattern which has better mass transport by convection flow through gas diffusion layer has higher performance than with parallel flow pattern but its pressure drop is increased such that the trade off between performance and pressure drop should be considered for selection of flow pattern of fuel cell.

  • PDF

Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs (KIST와 FZ-Julich SOFC간의 출력성능 비교)

  • Jung, Hwa-Young;Lee, Sang-Cheol;Tietz, Frank;Kim, Hae-Ryoung;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

Synthesis and Characterization of $La_{0.5}$$Sr_{0.5}$$MnO_3$-${Ce_{0.8}}{Gd_{0.2}}{O_{1.9}}$ Cathode for Solid Oxide Fuel Cell by Glycine-Nitrate Process (Glycine-Nitrate Process를 이용한 $La_{0.5}$$Sr_{0.5}$$MnO_3$-${Ce_{0.8}}{Gd_{0.2}}{O_{1.9}}$ 환원극 제조 및 특성평가)

  • 구본석;윤희성;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • 고체산화물 연료전지의 삼상 계면의 길이를 증가시키기 위해 Glycine-Nitrate Process(GNP)를 이용하여 환원극 재료인 L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM)과 전해질 재료인 C $e_{0.8}$G $d_{0.2}$ $O_{1.9}$(CGO)를 합성하였다. 적당한 합성조건을 찾기 위하여 글리신의 양을 달리하여 분말을 합성한 결과 LSM의 경우 글리신이 양이온 몰수의 2배일 때 perovskite상이 얻어졌으며 비표면적은 34$m^2$/g 이었다. 합성된 LSM과 CGO 분말을 50:50 wt%로 혼합하여 제작된 환원극을 screen-printing법으로 코팅한 후 각각 1200, 1300, 1350 및 140$0^{\circ}C$에서 4시간 동안 소결한 후 80$0^{\circ}C$에서 power density와 양극과전압 등을 측정한 결과 130$0^{\circ}C$에서 소결한 단위전지에서 최대 309 mW/$ extrm{cm}^2$의 power density를 얻을 수 있었다.다.

  • PDF

Electrochemical Study on the Effect of Post-Weld Heat Treatment Affecting to Corrosion Resistance Property of the Weldment of SCM440 Steel (SCM440강 용접부의 내식성에 미치는 용접후 열처리효과에 관한 전기화학적 연구)

  • 김성종;김진경;김종호;김기준;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.78-88
    • /
    • 2000
  • The effect of post-weld heat treatment(PWHT) of SCM440 steel was investigated with parameters such as micro-Vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss, etc. Each hardness of three parts(HAZ, BM, WM) by PWHT is lower than each of as-welded parts. However, hardness of WM area was the highest among those three parts in case of both PWHT and as-welded. Corrosion potential of WM part was the highest among those three parts and WM area was also acted as cathode without regard to PWHT. The magnitude of corrosion potential difference among three parts by PWHT was larger than that of three parts of as-welded, and corrosion current by galvanic cell of these three parts by PWHT was also larger compared to as-welded. Therefore, it is suggested that corrosion resistance property of SCM440 steel is decreased by PWHT than as-welded. However, both Al anode generating current and anode weight loss were also increased by PWHT compared to as-welded when SCM400 steel is cathodically protected by Al anode.

  • PDF