• Title/Summary/Keyword: Catenary system

Search Result 412, Processing Time 0.024 seconds

A Study on the Uplift for Applying of Heavy Simple Catenary System in a Overhead Rigid Conductor Rail Transition Section (강체전차선로 이행구간 Heavy Simple Catenary 적용을 위한 압상량 고찰)

  • Kim, Wan-il;Park, Weon-Chan;Lee, Jae-Bong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.688-694
    • /
    • 2018
  • The transition section of the overhead rigid conductor rail (ORCR) consists of a direct induction device and a limit point to prevent the power supply failure and failure of the electric railway vehicle pantograph due to the difference of the uplift in the catenary line. In T-Bar transition section, a twin simple catenary is mostly installed between the overhead catenary system (OCS) in the ground section and the ORCR in the underground section. In this paper, we compare and analyze the possibility of replacing the twin simple catenary with heavy simple catenary. The reliability of numerical analysis results was confirmed by comparing field test with numerical results. Comparing the numerical results of the twin simple catenary with the heavy simple catenary in the transition section, the difference uplift is 5.9[mm] on average. When applying heavy simple catenary instead of twin simple catenary, the slight difference of uplift can be compensated by adjusting the height of hanger-ear or support bracket.

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

A Study on the Development of Catenary stagger and height Measurement System (전차선 편위 및 높이 측정 시스템 개발에 관한 연구)

  • Song, Sung-Gun;Park, Seong-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.299-304
    • /
    • 2008
  • Catenary and Pantograph are a power supply devices for electric trains and shall be steadily contacted. Rail catenary must be installed precisely and managed for stable train operations. But external factors such as weathers, nature, etc., or aging affect catenary geometry. Changed catenary height causes high voltage spark or instant electric disconnection. Big spark and disconnection damage pantograph shoe and catenary coating and might interrupt rail operations. To prevent a big scale spark or electric disconnection catenary maintenance shall be required with catenary geometry measurement systems. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system reports suspicious overhead line sections with excessive height and stagger variance.

  • PDF

A study on identification of the damping ratio in a railway catenary system (철도 가선시스템의 감쇄 특성 파악에 관한 연구)

  • Park Sungyong;Jeon Byunguk;Lee Eungshin;Cho Yonghyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.529-533
    • /
    • 2005
  • A railway catenary system which supplies a train with electric power is an important system in determining the maximum speed of an electric train. However, a pantograph could be separated from a contact wire because of reciprocal action between a pantograph with constant upward force and a catenary system. The contact loss of a pantograph-catenary system is mainly affected by the dynamic characteristics of damping and wave propagation velocity of contact wire. For increasing speed of an electrical train, it is necessary to establish the techniques to identify the modal parameter of a catenary system through experiment. However, it is difficult to decouple each mode and to extract respect ive damping rat io since a catenary system has an extremely high modal density. For this reason, mode decoupling process to identify modal parameters is a principal technique in analyzing a catenary system. In this paper, the damping extract ion method for a catenary system using the continuous wavelet transform is discussed.

  • PDF

Wave Propagation Characteristics along a Simple Catenary with Arbitrary Impedance Condition (임의의 임피던스를 갖는 단순현가방식 가선계의 파동현상)

  • Park, Sukyung;Kim, Seamoon;Kim, Yang-Hann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3463-3473
    • /
    • 1996
  • The characteristics of wave propagation along a catenary depend on various impedance conditions; i.e., spatial impedance of catenary, impedance of boundaries. In this study, wave propagation along a simple catenary system is studied with arbitrary impedance conditions such as impedance of pantograph, boundary, catenary etc. Seven coupled equations which determine the characteristics of wave propagation along catenary system have been derived and numerically solved. Results demonstrate the role of each impedance condition in the dynamics of catenary system, i.e. the way in which the conditions affect waves on catenary as well as contact force of pantograph. The formulation and suggested solution method can be certainly used for desinging an optimal catenary system for a given pantograph.

A Technical Review on the Structure Design Criteria for a Catenary System with Maximum Design Speed of 200 km/h (200 km/h급 전차선로 구조강도 설계기준에 관한 기술적 검토)

  • 조용현;이기원;권삼영;최강윤;창상훈
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.273-280
    • /
    • 2001
  • In this study, a comparison between the structural design criteria for a catenary system with the maximum design speed of 100km/h and that of 300km/h was performed in order to establish that of 200km/h. According to the result, catenary design criteria for 300km/h operation is more conservative than that for 100km/h operation. This result shows that higher wind pressure and safety factor are adopted to catenary design for 300km/h operation. So, for the purpose of the economic structural design for catenary system, it is necessary to review the adoption possibility of catenary system for 100km/h operation first. In order to review the adoption possibility for catenary system for 100km/h operation, design criteria for 300km/h operation should be chosen for safer catenary structure.

  • PDF

Contact Loss Simulator to Analyze the Contact Loss of a Rigid Catenary System

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1320-1327
    • /
    • 2017
  • In this paper, a contact loss simulator for a rigid catenary system was designed and used to analyze the effect on the power source according to the conditions of the rigid catenary system and pantograph. R-bar applied to a high-speed train among the real rigid catenary system was used in the contact loss simulator for rigid catenary systems. The excitation frequency generated with the movement of the railway vehicle was simulated. The characteristics according to the frequency and amplitude of the excitation frequency and the presence or absence of pantograph movement were analyzed. This work is considered to be helpful in analyzing the characteristics of contact loss in the interface between a real rigid catenary system and a rail vehicle.

A Modeling and Contact Force Analysis of the Catenary-pantograph System for a High-speed Rail Vehicle (고속 전철용 가선-팬터그래프 시스템의 모델링 및 접촉력 해석)

  • 김진우;박인기;장진희;왕영용;한창수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.474-483
    • /
    • 2003
  • In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to high-speed trains are investigated. One of the most important issues accompanied by increasing the speed of high-speed rail is stabilization of current collection. To stabilize current collection, it is necessary the contact force between the catenary and the pantograph to be kept continuous without loss of contact. The analytical model of a catenary and a pantograph is constructed to simulate the behavior of an actual system. The analysis of the catenary based on the Finite Element Method (FEM) is performed to develop a catenary model suitable for high speed operation. The reliability of the models is verified by the comparison of the excitation test with Fast Fourier Transform (FFT) data of the actual system. The static deflection of the catenary, stiffness variation in contact lines, dynamic response of the catenary undergoing constant moving load, contact force, and each state of the pantograph model were calculated. It is confirmed that a catenary and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

Analysis of Current Collection Performance Testing and Result of 350[km/h] Catenary System (350km/h 전차선로 집전성능 시험 및 결과 분석)

  • Heo, Yong-Seok;Lee, In-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.365-369
    • /
    • 2016
  • The 350[km/h] catenary system was successfully opened in Honam high speed line. This 350[km/h] catenary system is firstly constructed in South Korea. Therefore the current collection performance of this system should be tested and evaluated by the authority. This paper describes the testings by running of HEMU-430X train and the evaluation criteria and result analysis to determine whether the performance of the catenary is good or not as a verification of catenary-pantograph interface. In detail, the contact force by pantograph, arcs by loss of contact and uplift amount of the catenary support were measured and discussed as a category of the current collection performance.

Arc Detection System using a Spectrometer for Status Monitoring of a Rigid Catenary

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2419-2425
    • /
    • 2017
  • In this paper, a system for the precise detection of arcs is proposed for a rigid catenary using a spectrometer. For this purpose, a miniature rigid catenary contact-loss simulator was used. Experiments were performed by varying the amplitude of the excitation frequency with which a real arc can occur using a simulator in the range of 5 to 15 mm. The range of the radiated wavelength of the copper, which is a material in the rigid catenary, and the irradiance were measured using a spectrometer according to the generated contact loss. In addition, the amount was monitored over time and its characteristics were analyzed. The voltage and current of the load were analyzed when the arc occurred due to contact loss. The analytical results will be applied to detect rigid catenary arcs and used as a monitoring system for real vehicles developed in the future. This will prevent abrasion and disconnection in rigid catenary systems.