• Title/Summary/Keyword: Catenary curve

Search Result 40, Processing Time 0.037 seconds

A study on the optimal design of rope way (索道線路의 最適設計에 대한 硏究)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 1987
  • As an attempt to make the multi-objection for the line design of the rope way, the resulted formulas from the catenary curve as exact ones were summarized, and it was found out that the Kuhn-Tucker's optimality conditions and regions of the objective functions can analytically be expressed with dimensionless parameters. The Pareto's optimum solution set was analytically obtained through the objective function-the minimum relation of $W^{*}$, and $W^{*}$ is a trade-off relation. From this, The dimension of a rope and the value of an initial tension that are the standard in design of the rope way were determined. It was concluded that $V^{*}$ should become minimum, and that the ratio of the dimension of rope to the value of and initial tension become larger than superposition factor corresponding to curve AB.to curve AB.

Analysis of Occurrence Tendency of Rail Force According to Running the Hanvit 200 Train on Transition Curve Track (한국형 틸팅차량 완화곡선 주행시 궤도작용력 발생경향 분석)

  • Park, Yong-Gul;Choi, Sung-Yong;Kim, Youn-Tae;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.678-686
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured rail force data in transition curve track, and then evaluated probability the range of load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of rail force by occurred a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation. Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation by changed of cant.

A Study on Evaluation Method of Ride Comfort Considering Superimposition of Vertical and Horizontal Curve (종곡선과 평면곡선 경합을 고려한 승차감 평가기법에 관한 연구)

  • Um, Ju-Hwan;Yang, Sin-Chu;Kim, Eun-Kyum;Choi, Il-Yoon;Kang, Yun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.309-316
    • /
    • 2010
  • When the horizontal and vertical curves are superimposed in railway alignments, which affects the running stability, ride comfort, and track maintenance costs. However, when designing new lines or realigning existing ones, there are many cases of superimposition caused by the existing fixed points (bridge, tunnel, turnout, and catenary system, etc) on the conventional lines and undesirable impacts on the environment, etc. In this study, when the horizontal and vertical curves are superimposed, in order to optimize the horizontal curve in aspect of the ride comfort, the object function was developed and verified by vehicle dynamic analysis. Also, the solution algorithm for simplified evaluation method was presented.

Investigation of Effective Maintenance System for the Infra on the Conventional Line Prepared for the Tilting Train Service (틸팅열차 상용화대비 기존선 인프라시스템의 효율적 유지보수체계 검토)

  • Yoo, Keun-Su;Lee, Chang-Hun;An, Gang-Yell;Kim, Joung-Tea
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.79-87
    • /
    • 2008
  • The major objective of this study is to investigate the effective maintenance system for the infrastructure on the conventional lines in which the tilting train runs. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks was developed. Besides, the efficiency prediction and the linear fitness of the existing conventional lines for a tiling train service were examined on the preceding study which was the development of track system innovation technology for speed-up of them. So, in this paper we propose the more effective maintenance method than the existing it in order to securing the high reliability and safety classified by the infrastructure, in analyzing foreign materials and the maintenance as well as the inspection cycle concerning domestic infrastructures of the track and the catenary etc. on the railway. And we look forward to playing a decisive role as reference material for the effective improvement of the existing maintenance about the infra on the conventional lines for the commercial service of the tilting train.

  • PDF

The Study of Tilting Control System for Curve Line Speed-Up (곡선선로 속도향상을 위한 열차틸팅제어장치에 관한 연구)

  • Lee, Su-Gil;Han, Seong-Ho;Song, Yong-Soo;Han, Young-Jae;Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.248-250
    • /
    • 2004
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

The Study of Performance Test of Conventional Curve Line for Korean Tilting Train (한국형 틸팅열차 곡선부 성능시험 연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1211_1212
    • /
    • 2009
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF

Analysis of Magnetic Field on Ultra High Voltage ac Transmission Line (초고압 송전선로의 자계해석에 관한 연구)

  • Lee, Joo-Youl;Ko, Eun-Young;Jung, Ho-Sung;Shin, Myung-Chul;Kweon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1382-1384
    • /
    • 1999
  • Traditional magnetic field computation techniques assume that the current carrying power line conductors are straight horizontal wires. This assumption result in much errors. So this paper considerd catenary curve for the dip of real transmission line. We have data from various position at transmission line, on the earth. And as far from transmission condutor a eddy current affect of the position are con siderd.

  • PDF

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

Estimation of tuna longline hook depth for improved performance in Fiji

  • BAINVES, Viliame;LEE, Chun-Woo;PARK, Subong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.219-227
    • /
    • 2017
  • In pelagic longline, deploying the gear such that the depth of the hook is the same as that of the target fish is important to improve the fishing performance and selectivity. In this study, the depth of the tuna longline hook was estimated using the mass-spring model, catenary curve method, and secretariat of the pacific commission Pythagorean method in order to improve the performance of the longline gear in Fiji. The former two methods were estimated to be relatively accurate, and the latter showed a large error. Further, the mass-spring model accounted for the influence of tidal current in the ocean, which was found to be appropriate for use in field trials.