• Title/Summary/Keyword: Catenary Wires

Search Result 40, Processing Time 0.033 seconds

On the Implementation of an Advanced Judgement Algorithm for Contact Loss of Catenary System (전차선의 집전상태 판단 알고리즘 구현)

  • Park, Young;Jung, Ho-Sung;Yun, Il-Kwon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.850-854
    • /
    • 2014
  • Analyzing dynamic performance between pantograph and contact wire depends on mechanical and electrical conditions such as contact force, currents, aerodynamics of pantograph and tension of overhead contact wire. For the characteristic of dynamic performance between pantograph and overhead contact wire, various evaluation systems are used to measuring of the interaction of the contact line and the pantograph. Among the various methods, the contact force and percentage of arcing are intended to prove the safety and the quality of the current collection system on the train. However, these methods are only capable of measuring on the train which are installed measurement systems. Therefore in this paper, a track-side monitoring system was implemented to measure electrical characteristics from active overhead contact wire systems in order to constantly estimate current collection performance of railway operation. In addition, a method to analyze loss of contact phenomena was proposed. According to simulation results, the proposed system was capable of measuring abnormal electrical behavior of pantograph and contact wires on the track-side. The advantage of the proposed system is possible to detect loss of contact or any other electrical abnormalities of all types of trains within sections from sub to sub without the need to install any on-board equipment on trains.

Development of an Uplift Measurement System for Overhead Contact Wire using High Speed Camera (고속카메라를 이용한 전차선 압상량 검측 시스템 개발)

  • Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Kim, Hyung-Jun;Kim, In-Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.864-869
    • /
    • 2009
  • The measurement of contact wire uplift in electric railways is one of the most important test parameters to accepting the maximum permitted speed of new electric vehicles and pantographs. The contact wire uplift can be measured over short periods when the pantograph passes monitoring stations. In this paper, a high-speed image measurement system and its image processing method are being developed to evaluate dynamic uplift of overhead contact wires caused by pantograph contact forces of Korea Tilting Train eXpress (TTX) and Korea Train eXpress (KTX). The image measurement system was implemented utilizing a high-speed CMOS (Complementary Metal Oxide Semiconductor) camera and gigabit ethernet LAN. Unlike previous systems, the uplift measurement system using high speed camera is installed on the side of the rail, making maintenance convenient. On-field verification of the uplift measurement system for overhead contact wire using high speed camera was conducted by measuring uplift of the TTX followed by operation speeds at the Honam conventional line and high-speed railway line. The proposed high-speed image measurement system to evaluate dynamic uplift of overhead contact wires shows promising on-field applications for high speed trains such as KTX and TTX.

A STUDY ON THE CONFIGURATIONS OF KOREAN NORMAL DENTAL ARCHES FOR PREFORMED ARCH WIRE (Preformed Arch Wire 제작(製作)을 위(爲)한 한국인(韓國人) 정상교합자(正常咬合者)의 치열궁형태(齒列弓形態)에 관(關)한 연구(硏究))

  • Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • Human dental arches are very various in their sizes and dimensions as well as forms, so, it is very difficult to describe the shape of human dental arches as a criterion, and, further, to construct the preformed arch wires fit to them. In this study for solving these problems, the shape of eighty Korean normal lower dental arches were studied, and nine theoretical two-parameter catenary curves were derived, which were representative of all of the sample. Test were conducted which demonstrated that these nine cattenary curves would correspond with a reasonable degree of accuracy to all of the dental arches, lower and upper.

  • PDF

Analysis of Magnetic Field on Ultra High Voltage ac Transmission Line (초고압 송전선로의 자계해석에 관한 연구)

  • Lee, Joo-Youl;Ko, Eun-Young;Jung, Ho-Sung;Shin, Myung-Chul;Kweon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1382-1384
    • /
    • 1999
  • Traditional magnetic field computation techniques assume that the current carrying power line conductors are straight horizontal wires. This assumption result in much errors. So this paper considerd catenary curve for the dip of real transmission line. We have data from various position at transmission line, on the earth. And as far from transmission condutor a eddy current affect of the position are con siderd.

  • PDF

Corrosion Characteristics of Catenary Materials in Electric Railway System (전차선로 가선재료의 부식특성)

  • 김용기;윤상인;장세기;이재봉
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as Catenary Materials in Electric Railway System. Since these materials may have chance to be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important not only to investigate the corrosion characteristics but also to measure corrosion rates in various corrosive environments. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization. a.c impedance spectroscopy and galvanic corrosion tests were carried out in these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effect on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System (6.78MHz, 거리 60cm, 50W급 무선 전력 전송 시스템용 High Quality Factor PCB 코일 개발)

  • Lee, Seung-Hwan;Yi, Kyung-Pyo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.468-479
    • /
    • 2016
  • In order to supply power to online monitoring systems that are attached to high voltage catenary or overhead wires, a wireless power transfer system is required that is able to transmit power over the insulation gap. Such wireless power transfer systems have transmitter and receiver coils that have diameters of over 10cm. This paper focused on an investigation of the sources of loss in the coils when the coils are fabricated using printed circuit board technology. Using finite element simulation results, it has been shown that the dielectric loss in the substrate was the dominant source of the total loss. It has been demonstrated that the selection of a proper dielectric material was the most critical factor in reducing the loss. For further reduction of the loss, the distributed tuning capacitor method and the slotting of the inter-turn spaces have been proposed. For the evaluation of the proposed methods, four coils have been fabricated and their equivalent series resistances and quality factors were measured. Measured quality factors were greater than 300, which means that these devices will be helpful in achieving high coil-to-coil efficiency.

Safely Evaluation on Common Grounding System for Electric Railway (전기철도의 공용접지 시스템에 대한 안정성 평가에 관한 연구)

  • Song, Jin-Ho;Hwang, Yu-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.298-306
    • /
    • 2002
  • We performed an safety evaluation on constructing of a common grounding system for electrical railway in view of its efficacy and technical fit. In order to compare the conventional grounding method, which has been individually conducted, with the common grounding with all ground wires connected in common to the counterpoise buried below the surface of the earth in parallel with rail, we set up scenarios with several cases of fault and load conditions in Chungbuk railway sections with the common grounding system. Based on models for railway conductors including the grounded system, line Parameters of railway power system are computed. The circuit model for power system with up and down lines, auto-transformers and railway substations is used to compute impedances of counterpoise and substation ground net. For each scenario with faults and operation conditions of railway, the induced potentials on signal and communication lines are also computed. It is shown that the common grounding for Chungbuk railway is superior experimentally to the conventional method in three respects: (1) the lower rail potentials during operation of railway in line, (2) the lower rail potentials for short-circuit faults between catenary and rail, and (3) the lower stress voltages on signal and communication lines for short-circuit or ground faults. The analysis results confirm that the grounding system for electric railway is required to be built by the common grounding and be evaluated on its safety in design.

An Experimental Study on the Aerodynamic Characteristics of the Robust Optimized Shape of Pantograph Panhead (팬터그래프 팬헤드 강건최적형상에 대한 공기역학적 특성에 관한 실험적 연구)

  • Rho, Joo-Hyun;Kwak, Min-Ho;Park, Hoon-Il;Lee, Young-Bin;Lee, Dong-Ho;Cho, Hwan-Kee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2224-2229
    • /
    • 2008
  • High-Speed train has been developed and it becomes faster and environmental friendly. As trains run faster, Noise of trains is generated mainly by aerodynamic disturbance. Pantograph, both ends of trains, and gaps of coaches which are thought to be aerodynamic noise's factors are primarily studied. Pantograph is a similarly shaped metal framework on the roof of an electric high speed train, transmitting current from an overhead electric catenary wire. Panhead which contacts electric wires directly looks like a bluff strut, goes through flows, is sensitive to external disturbances and is one of the most important factors which decide whole vehicles' driving ability. In this study, aerodynamically robust optimized pantograph panhead shape is designed and then evaluated through subsonic wind tunnel test. To compare these with existing panhead rectangular shapes or circular cylinder shapes, By visualizing strong vortex flow patterns which are main noise sources, characteristics are compared and analyzed

  • PDF

A Novel Fault Location Scheme on Korean Electric Railway System Using the 9-Conductor Representation

  • Lee, Chang-Mu;Lee, Han-Sang;Yoon, Dong-Hee;Lee, Han-Min;Song, Ji-Young;Jang, Gil-Soo;Han, Byung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 2010
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because of long distance, 40[km] or above, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, it must be modeled exactly to analyze the fault current magnitude and fault location. In this paper, suggesting the novel scheme of fault location, a 9-conductor modeling technique including boost wires and impedance bonds is introduced based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and propose a powerful model for fault analysis on electric railway systems.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.