• Title/Summary/Keyword: Catechol.

Search Result 409, Processing Time 0.027 seconds

Production of Catechol from Benzene by a Mutant of Pseudomonas sp. (Pseudomonas sp. HW-103 변이주에 의한 Benzene으로부터 Catechol 생산)

  • 황기철;이상협;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.224-230
    • /
    • 1989
  • For the production of catechol from benzene, bacteria capable of assimilating benzene as a sole carbon and energy source were isolated from soils. Among them, newly isolated strain, KY-114 hay-ing the best ability of producing catechol from benzene was selected and a mutant Pseudomonas sp. HW-103 was developed from Pseudomonas sp. KY-114 by using mutagenesis induced by N-methyl - N'- nitro - N -nitrobo guanidine. The catechol reduction from benzone by Pseudomonas sp. HW-103 was investigated under various conditions. The highest catechol concentration (0.61 g/$\ell$) was obtained in the growth medium (pH 6.5) containing 1% sodium citrate, 0.75% (NH$_4$)$_2$SO$_4$, 0.15% benzene and other minerals at 3$0^{\circ}C$ after incubating of 15hrs. In the catechol production through the reaction with resting rolls, 2.5 g/1 of catechol was produced from 4 g/$\ell$ of benzene after incubation of 10 hrs under the optium conditions, which correponds to 45% of theoretical catechol yield.

  • PDF

Effect of Natural Compounds on Catechol Estrogen-Induced Carcinogenesis

  • Sung, Nam-Ji;Park, Sin-Aye
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The hydroxylation of estradiol results in the formation of catechol estrogens such as 2-hydroxyestradiol ($2-OHE_2$) and 4-hydroxyestradiol ($4-OHE_2$). These catechol estrogens are further oxidized to quinone metabolites by peroxidases or cytochrome P450 (CYP450) enzymes. Catechol estrogens contribute to hormone-induced carcinogenesis by generating DNA adducts or reactive oxygen species (ROS). Interestingly, many of the natural products found in living organisms have been reported to show protective effects against carcinogenesis induced by catechol estrogens. Although some compounds have been reported to increase the activity of catechol estrogens via oxidation to quinone metabolites, many natural products decreased the activity of catechol estrogens by inhibiting DNA adduct formation, ROS production, or oxidative cell damage. Here we focus specifically on the chemopreventive effects of these natural compounds against carcinogenesis induced by catechol estrogens.

Biochemical and Cytological Changes of Pseudomonas sp. DJ-12 Cells in Response to Catechol Treatment (Catechol 처리에 의한 Pseudomonas sp. DJ-12의 생화학 및 세포학적 변화)

  • 고연자;임재윤;김치경;이기성
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • Aromatic hydrocarbons which are not easily degraded by microorganisms can be accumulated in the conlaminated environment for a long lime, producing toxic effects on wild lives and humans. However, the sublethal concentrations of the chemicals induce the synthesis of stress-shock proteins in the cells and increase the adaptability of the organisms to the environmental stresses. In this study, therefore, the cells of Psezido~nonus sp. DJ- 12 treated with catechol at various concentrations were inveshgated for their survival, biodegtadability of catechol, production of stress-shock proteins, and cytological changes. The organisms were capable of degrading catechol at the range of 0.5 to 1.0 mM concentration wilhin 6 hours incubation, but they were killed by $10^2$-10$^3$ celllinl at 3 mM or higel- concentration without any catechol degradation. These cells treated with catechol begm lo produce DnaK and GroEL at 1 mM and 0.5 mM. respectively. Pseudumonas sp. DJ-12 treated with 10 mM catechol for I hour exhihiled some punctuated pores on the cell wall and contortion of the rod shape. The cells treated with he sublethal concentration of catechol showed the increased tolerance for suvival when exposed to the lethal concentration, and such tolerant effects were functioned crossly among benzoate, 4-chlorobenzoate, 'and catechol.

  • PDF

Anti-Viral Hemorrhagic Septicemia Virus (VHSV) Activity of 3-Methyl Catechol (바이러스성출혈성패혈증 바이러스 감염에 대한 3-Methyl Catechol의 항바이러스성 활성)

  • Cho, Se-Young;Min, Na-Rae;Kim, Young O;Kim, Duwoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.644-651
    • /
    • 2021
  • Viral hemorrhagic septicemia virus (VHSV) is a fish pathogen responsible for causing enormous economic loss to the aquaculture industry not only in Korea but worldwide. Thus, it is necessary to identify natural compounds that can be used to control the spread of VHSV. In this study, the anti-VHSV activities of five catechol derivatives, i.e., catechol, pyrogallol, 3-methyl catechol, veratrole, and 3-methyl veratrole-extracted from green tea-were assessed. The antiviral activities of these derivatives were found to be dependent on their structure, i.e., the hydroxyl or methoxyl group and their substituent groups-on the benzene ring. Catechol, pyrogallol, and 3-methyl catechol exhibited relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities than veratrole, and 3-methyl veratrole. Moreover, 3-methyl catechol harboring a methyl substituent group increased the viability of the virus-infected cells and resulted in a 2.86 log reduction in the gene copies of VHSV N (per mL) in real-time PCR analysis. In conclusion, the catechol derivatives harboring hydroxyl groups in their benzene ring exhibited higher antioxidant activities than those harboring the methoxyl groups. However, catechol derivatives with a methyl group at the 3'-position of the benzene ring exhibited higher antiviral activity than those harboring a hydroxyl group. To our knowledge, this is the first study to evaluate the relationship between the structure and the anti-VHSV activity of catechol derivatives.

Molecular Cloning and M13 Subcloning of Genes Encoding Catechol Dioxygenases

  • Kim, Young-Soo;Choi, Bong-Soo;Min, Kyung-Rak
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.48-51
    • /
    • 1992
  • Achromobacter xylosoxidans KF701 and Pseudomonas putida (NAH7) were significantly different in degradative capability of aromatic compounds including benzoates, biphenyls, and naphthalene. However, both of the bacterial strains can grown on catechol as the sole carbon and energy source. Catechol 2, 3-dioxygenase gene for naphthalene oxidation or biphenyl oxidation was cloned into Escherichia coli HB 701. A E. coli HB 101 clone containing catechol 2, 3-dioxygenase gene from P. putida (NAH7) contains a recombinant plasmid with 3.60kb pBR322 and 6-kb insert DNA. Another E. coli HB101 clone containing catechol 2, 3-dioxygenase gene from A. xylosoxidans KF 701 has a recombinant plasmid with 4.4kb pBR322 and 10-kb insert DNA. Physical maps of the recombinant plasmids were constructed, and catechol 2, 3-dioxygenase gene in the recombinant plasmide was further localized and subcloned int M13. The cloned-catechol 2, 3-dioxygenase game products were identified as yellow bands on nondenaturaing polyacrylamide gel after electrophoresis followed by activity staining with catechol solution.

  • PDF

A study on the analysis of rare earth elements by differential pulse anode stripping voltammetry (시차펄스 양극벗김 전압-전류법에 의한 희토류 원소의 분석에 관한 연구)

  • Kim, Jae-Kyun;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.369-375
    • /
    • 2005
  • The differential pulse anode stripping voltammograms of some rare earth elements and their complexes with catechol have been investigated in various pH and electrolytes. In a 0.1 M LiCl and pH 5.3 solution, $Euv^{3+}$ and $Pr^{3+}$ showed a single oxidation peak at -0.2 V and the oxidation currents were linearly increased with the concentration of those ions. $Tm^{3+}$, $Tb^{3+}$, $Yb^{3+}$ and $Sm^{3+}$ showed two oxidation peaks at -0.5 V and -0.2 V and the oxidation currents at -0.5 V were increased with the concentration increase of those ions. The linear range of those calibration curves was in 1 ppm-10 ppm. In the case of voltammograms of catechol complexes of rare earth elements, $Tb^{3+}$-catechol and $Eu^{3+}$-catechol complex showed a single oxidation peak at -0.95 V and -0.65V, respectively and $Sm^{3+}$-catechol, $Pr^{3+}$-catechol, $Tm^{3+}$-catechol and $Yb^{3+}$-catechol complexes showed two oxidation peaks. The linear range of the calibration curves of those complex was 0.1 ppm~1.0 ppm.

Study on the Pyrolysis of Polyphenols from Tobacco by Direct Inlet/MS (Direct Inlet/MS를 이용한 잎담배중 폴리페놀 화합물의 열분해에 관한 연구)

  • 박진우
    • YAKHAK HOEJI
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 1982
  • Direct inlet/MS was used to investigate the pyrolysis pathway and the pyrolyzates of tobacco polyphenols as precursor of catechol which has been known as one of the most potent co-carcinogen from cigarette smoke. Caffeic acid, catechol and quercetin, catechol were detected from the pyrolyzates of chlorogenic acid and rutin, respectively. Interrelationship between polyphenols from tobacco leaf and catechol from cigarette smoke was investigated by using HPLC and GC. These results reveal that chlorogenic acid is the most significant precursor of catechol in cigarette smoke.

  • PDF

Toxic Effects of Catechol and 4-Chlorobenzoate Stresses on Bacterial Cells

  • Park, Sang-Ho;Ko, Yeon-Ja;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2001
  • Catechol and 4-chlorobenzoate (4CBA) which are produced from the biodegradation of a variety of aromatic and chloroaromatics have been recognized as toxic to living organisms. In this study, the toxic effects of catechol and 4-chlorobenzoate on gram-positive and -negative bacteria were examined in terms of survival, morphology, change in fatty acids and membrane protein composition. The survival rate of the organisms during treatment for 6 h was decreased, as the concentration of each aromatic was increased. Escherichia coli and Pseudomonas cells treated with catechol and 4CBA at concentrations causing a significant decrease in their viability, showed destructive openings in their cell envelopes. Bacills subtilis treated with the aromatics were reduced in cell size and Staphylococcus aureus cells displayed irregular rod shapes with wrinkled surfaces. The bacterial cells treated with 20 mM catechol showed increases in unsaturated fatty acids, but several saturated fatty acids were decreased. In the E. coli cells treated with 20 mM catechol, inner membrane proteins of 150 kDa and 105 kDa were decreased. But several kinds of the inner and outer membrane proteins were increased. In B. subtilis treated with 20 mM catechol, several kinds of proteins were increased or decreased in membrane proteins.

  • PDF

Optimization of Catechol Production Using Immobilized Resting Cells of Pseudomonas putida in Aqueous/organic Two-phase System

  • Chae, Hee-Jeong;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.345-351
    • /
    • 1997
  • An aqueous/organic two-phase reaction system was applied to the production of catechol using immobilized resting cells of Pseudomonas putida CY 400. Water/ethyl ether system was used because of high partition coefficient of catechol and thus to reduce the product inhibition and degradation. Among the tested immobilization carriers, polyacrylamide gel gave the highest catechol productivity. The immobilization seemed to protect the cells against solvent toxicity. From the simulation of reaction conditions based on two-phase models, it was found that there was an optimum acetate concentration at fixed benzoate and cell concentrations for the catechol productivity. A lower phase volume ratio (lower fraction of organic phase) gave a higher productivity. However, the substrate conversion was low at low phase volume ratio.

  • PDF

Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols

  • Cha Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.778-785
    • /
    • 2006
  • Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.