Browse > Article
http://dx.doi.org/10.5657/KFAS.2021.0644

Anti-Viral Hemorrhagic Septicemia Virus (VHSV) Activity of 3-Methyl Catechol  

Cho, Se-Young (Foodborne Virus Research Center, Chonnam National University)
Min, Na-Rae (Department of Food Science and Technolgy, Chonnam National University)
Kim, Young O (Department of Food Science and Technolgy, Chonnam National University)
Kim, Duwoon (Foodborne Virus Research Center, Chonnam National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.54, no.5, 2021 , pp. 644-651 More about this Journal
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a fish pathogen responsible for causing enormous economic loss to the aquaculture industry not only in Korea but worldwide. Thus, it is necessary to identify natural compounds that can be used to control the spread of VHSV. In this study, the anti-VHSV activities of five catechol derivatives, i.e., catechol, pyrogallol, 3-methyl catechol, veratrole, and 3-methyl veratrole-extracted from green tea-were assessed. The antiviral activities of these derivatives were found to be dependent on their structure, i.e., the hydroxyl or methoxyl group and their substituent groups-on the benzene ring. Catechol, pyrogallol, and 3-methyl catechol exhibited relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities than veratrole, and 3-methyl veratrole. Moreover, 3-methyl catechol harboring a methyl substituent group increased the viability of the virus-infected cells and resulted in a 2.86 log reduction in the gene copies of VHSV N (per mL) in real-time PCR analysis. In conclusion, the catechol derivatives harboring hydroxyl groups in their benzene ring exhibited higher antioxidant activities than those harboring the methoxyl groups. However, catechol derivatives with a methyl group at the 3'-position of the benzene ring exhibited higher antiviral activity than those harboring a hydroxyl group. To our knowledge, this is the first study to evaluate the relationship between the structure and the anti-VHSV activity of catechol derivatives.
Keywords
Viral hemorrhagic septicemia virus; 3-methyl catechol; Antioxidant; Antiviral activity; Structure-activity relationship (SAR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gulcin I and Beydemir S. 2013. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev Med Chem 13, 408-430. https://doi.org/10.2174/138955713804999874.   DOI
2 Li R, Narita R, Ouda R, Kimura C, Nishimura H, Yatagai M, Fujita T and Watanabe T. 2018b. Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomyocarditis virus. R Soc Chem Adv 8, 35888-35896. https://doi.org/10.1039/C8RA07096B.   DOI
3 Marino-Merlo F, Papaianni E, Frezza C, Pedatella S, De Nisco M, Macchi B, Grelli S and Mastino A. 2019. NF-κB-dependent production of ROS and restriction of HSV-1 infection in U937 monocytic cells. Viruses 11, 428. https://doi.org/10.3390/v11050428.   DOI
4 Nguyen TL, Lim YJ, Kim DH and Austin B. 2016. Development of real-time PCR for detection and quantification of Streptococcus parauberis. J Fish Dis 39, 31-39. https://doi.org/10.1111/jfd.12322.   DOI
5 Rice-Evans CA, Miller NJ and Paganag G. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9.   DOI
6 Sun YG, Cui H, Li YH and Lin XQ. 2000. Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53, 661-666. https://doi.org/10.1016/s0039-9140(00)00550-6.   DOI
7 Gulcin I. 2012. Antioxidant activity of food constituents: an overview. Arch Toxicol 86, 345-391. https://doi.org/10.1007/s00204-011-0774-2.   DOI
8 Srinivasan K. 2014. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr 54, 352-372. https://doi.org/10.1080/10408398.2011.585525.   DOI
9 Song JH, Shim JK and Choi HJ. 2011. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol J 8, 460. https://doi.org/10.1186/1743-422X-8-460.   DOI
10 Pena-Moran OA, Villarreal ML, lvarex-Berber L, MenesesAcosta A and Rodrguez-Lpez. 2016. Cytotoxicity, posttreatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 21, 1013. https://doi.org/10.3390/molecules21081013.   DOI
11 Ulomskiy EN, Ivanova AV, Gorbunov EB, Esaulkova IL, Slita AV, Sinegubova EO, Voinkov EK, Drokin RA, Butorin II, Gazizullina ER, Gerasimova EL, Zarubaev VV and Rusinov VL. 2020. Synthesis and biological evaluation of 6-nitro-1,2,4-riazoloazines containing polyphenol fragments possessing antioxidant and antiviral activity. Bioorg Med Chem Lett 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216.   DOI
12 Xie J and Schaich KM. 2014. Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J Agric Food Chem 62, 4251-4260. https://doi.org/10.1021/jf500180u.   DOI
13 Saha RK, Takahashi T, Kurebayashi Y, Fukushima K, Minami A, Kinbara N, Ichitani M, Sagesaka YM and Suzuki T. 2010. Antiviral effect of strictinin on influenza virus replication. Antivir Res 88, 10-18. https://doi.org/10.1016/j.antiviral.2010.06.008.   DOI
14 Gulcin I. 2011. Antioxidant activity of eugenol: A structureactivity relationship study. J Med Food 14, 975-985. https://doi.org/10.1089/jmf.2010.0197.   DOI
15 Shirai K. 1986. Screening of microorganisms for catechol production from benzene. Agric Biol Chem 50, 2875-2880. https://doi.org/10.1080/00021369.1986.10867845.   DOI
16 Choi JA. 2014. Elucidation of antiviral effect of quercetin against viral hemorrhagic septicemia virus using proteomic analysis. M.S. Thesis, Chonnam National University, Gwangju, Korea.
17 Bortolomeazzi R, Sebastianutto N, Toniolo R and Pizzariello A. 2007. Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem 100, 1481-1489. https://doi.org/10.1016/j.foodchem.2005.11.039.   DOI
18 Braicu C, Ladomery MR, Chedea VS, Irimie A and Neagoe IB. 2013. The relationship between the structure and biological actions of green tea catechins. Food Chem 141, 3282-3289. https://doi.org/10.1016/j.foodchem.2013.05.122.   DOI
19 Callizot N, Warter JM and Poindron P. 2001. Pyridoxine-induced neuropathy in rats: a sensory neuropathy that responds to 4-methylcatechol. Neurobiol Dis 8, 626-635. https://doi.org/10.1006/nbdi.2001.0408.   DOI
20 Cano I, Collet B, Pereira C, Paley R, van Aerle R, Stone D and Taylor NG. 2016. In vivo virulence of viral haemorrhagic septicaemia virus (VHSV) in rainbow trout Oncorhynchus mykiss correlates inversely with in vitro Mx gene expression. Vet Microbiol 187, 31-40. https://doi.org/10.1016/j.vetmic.2016.02.012.   DOI
21 Heim KE, Tagliaferro AR and Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13, 572-584. https://doi.org/10.1016/s0955-2863(02)00208-5.   DOI
22 Kauffman ME, Keener WK, Clingenpeel SR, Watwood ME, Reed DW, Fujita Y and Lehman RM. 2003. Use of 3-hydroxyphenylacetylene for activity-dependent, fluorescent labeling of bacteria that degrade toluene via 3-methylcatechol. J Microbiol Methods 55, 801-805. https://doi.org/10.1016/j.mimet.2003.07.001.   DOI
23 Kim YH. 2009. Effect of reactive oxygen species on hepatitis B virus replication and gene expression. M.S. thesis. Korea University, Seoul, Korea.
24 Lorenzo JM and Munekata PE. 2016. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac J Trop Biomed 6, 709-719. https://doi.org/10.1016/j.apjtb.2016.06.010.   DOI
25 Robbins RJ. 2003. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51, 2866-2887. https://doi.org/10.1021/jf026182t.   DOI
26 Bizzarri BM, Botta L, Capecchi E, Celestino I, Checconi P, Palamara AT, Nencioni L and Saladino R. 2017. Regioselective IBX-mediated synthesis of coumarin derivatives with antioxidant and anti-influenza activities. J Nat Prod 80, 3247-3254. https://doi.org/10.1021/acs.jnatprod.7b00665.   DOI
27 Chavez JH, Leal PC, Yunes RA, Nunes RJ, Barardi CR, Pinto AR, Simoes CM and Zanetti CR. 2006. Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet Microbiol 116, 53-59. https://doi.org/10.1016/j.vetmic.2006.03.019.   DOI
28 Chiang LC, Chiang W, Chang MY, Ng LT and Lin CC. 2002. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir Res 55, 53-62. https://doi.org/10.1016/s0166-3542(02)00007-4.   DOI
29 Chobot V, Huber C, Trettenhahn G and Hadacek F. 2009. (±)-Catechin: chemical weapon, antioxidant, or stress regulator?. J Chem Ecol 35, 980-996. https://doi.org/10.1007/s10886-009-9681-x.   DOI
30 Ciriolo MR, Palamara AT, Incerpi S, Lafavia E, Bue MC, De Vito P, Garaci E and Rotilio G. 1997. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem 272, 2700-2708. https://doi.org/10.1074/jbc.272.5.2700.   DOI
31 Kim WS, Kim SR, Kim D, Kim JO, Park MA, Kitamura SI, Kim HY, Kim DH, Han HJ, Jung SJ and Oh MJ. 2009. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed olive flounder Paralichthys olivaceus in Korea. Aquaculture 296, 165-168. https://doi.org/10.1016/j.aquaculture.2009.07.019.   DOI
32 Perlemuter G, Letteron P, Carnot F, Zavala F, Pessayre D, Nalpas B and Brechot C. 2003. Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model. J Hepatol 39, 1020-1027. https://doi.org/10.1016/s0168-8278(03)00414-8.   DOI
33 Li R, Narita R, Nishimura H, Marumoto S, Yamamoto SP, Ouda R, Yatagai M, Fujita T and Watanabe T. 2018a. Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, softwood, and bamboo. ACS Sustainable Chem Eng 6, 119-126. https://doi.org/10.1021/ACSSUSCHEMENG.7B01265.   DOI
34 Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K and Watanabe M. 1999. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36, 47-50. https://doi.org/10.1039/A809656B.   DOI
35 Xu J, Xu Z and Zheng W. 2017. A review of the antiviral role of green tea catechins. Molecules 22, 1337. https://doi.org/10.3390/molecules22081337.   DOI
36 Basurco B and Benmansour A. 1995. Distant strains of the fish rhabdovirus VHSV maintain a sixth functional cistron which codes for a nonstructural protein of unknown function. Virology 212, 741-745. https://doi.org/10.1006/viro.1995.1534.   DOI
37 Dikalov SI and Harrison DG. 2014. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20, 372-382. https://doi.org/10.1089/ars.2012.4886.   DOI
38 Husken LE, Oomes M, Schroen K, Tramper J, de Bont JA and Beeftink R. 2002. Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96, 281-289. https://doi.org/10.1016/s0168-1656(02)00045-7.   DOI
39 Kang SY, Kang JY and Oh MJ. 2012. Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses In Vitro. J Microbiol 50, 293-300. https://doi.org/10.1007/s12275-012-2068-7.   DOI
40 Kim HJ and Chong MS. 2018. Antiviral activities of mulberry Morus alba juice and seed against influenza viruses. Evid Based Complementary Altern Med 2018, 2606583. https://doi.org/10.1155/2018/2606583.   DOI