• Title/Summary/Keyword: Catamaran

Search Result 107, Processing Time 0.044 seconds

Analysis of the Flow Field around a Hydrofoil Catamaran by Using Model Experiment and Numerical Analysis (모형시험 및 수치해석을 통한 수중익쌍동선 주위의 유동장 해석)

  • Na, Y.I.;Lee, Y.G.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.61-71
    • /
    • 1997
  • Numerical and experimental studies are carried out to analyse the resistance characteristics of a hydrofoil catamaran which is advancing on calm water with uniform speed. For the hydrofoil catamaran with modified Wigley hull which has asymmetric transverse section and transom stem, the studies are carried out for the range of Froude number 0.2 to 1.0 and the angle of attack of the hydrofoil $0.0^{\circ}$ to $3.0^{\circ}$. The model tests are carried out in the ship model basin of Inha University. Also the numerical computations using a finite difference method are performed for the simulations of fluid flow around the hull form and the results are compared with the results of the model tests. The present computation results show well quantitative agreement with the experimental results. The experimental results show that the shape and angle of attack of the foils exerts a considerable influence on the running posture and resistance performance of ship.

  • PDF

Structural Safety Assessments for Viewing Window of Semi-Submersible Catamaran (반 잠수형 쌍동선에 설치된 수중관람용 관람창 설계 및 구조 안전성 평가)

  • Hwang, Se Yun;Kim, Hosung;Lee, Kyeong Hoon;Kim, Yooil;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.291-299
    • /
    • 2014
  • In the design process of ship or its comprising components, the key to the successful design is how to guarantee the structural safety satisfying the international standard and regulation, which sometimes is not clear enough to cover the detail designs. This study deals with the design procedure for submersible viewing window installed in catamaran. As the window material, the Plexiglass, a type of reinforced plastic, is considered to satisfy the design requirements of international standard. Window thickness is calculated using geometric nonlinear finite element analysis, in order to take into account possible large deformation due to low stiffness of the Plexiglass, and the results are compared with those determined by the procedure specified in ISO12216. Finally, for the validation of proposed design, the pressure test had been carried out following the procedure specified in the standard, and structural safety was checked.

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Investigation of the Effect of Water Depths on Two-dimensional Hydrodynamic Coefficients for Twin-hull Sections (쌍동체(雙胴體)에 작용(作用)하는 2차원 유체력계수(流體力係數)의 수심(水深)의 변화(變化)에 따른 영향(影響)에 관한 고찰(考察))

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 1982
  • A floating rig, which has been used to develop the ocean resources has a common characteristics with the catamaran ship that it is composed of the two simple hulls. So the motion responses of the floating rig can be predicted theoretically with the aid of the strip method as those of the catamaran. And for the strip method, the two-dimensional hydrodynamic coefficients are the most important inputs to predict the results accurately. In this report, a theoretical method is proposed for calculating two-dimensional hydrodynamic forces and moments acting upon arbitrary shaped twin-hull cylinders, which are forced to make a heaving, swaying and rolling oscillation about their mean position on the free surface of a finite depth water. The theoretical results by making use of the singularity distribution method are presented. The accuracy of the coefficients was confirmed to be reasonable by the comparison with the Ohkusu's results for two circular cylinders in an infinite depth water. The depth effects on two-dimensional hydrodynamic coefficients for two circular cylinders are also checked. In some range of wave numbers, large differences in the behavior of hydrodynamic coefficients between for a finite depth and for an infinite depth are shown.

  • PDF

Study of Hull Form Development and Resistance Performance of Catamaran-type High Speed Fishing Leisure Boat (고속 쌍동형 낚시 레저보트 선형개발과 저항성능에 관한 연구)

  • Jeong, Uh-Cheul;Kwon, Soo-Yeon;Choi, Ji-Hoon;Kim, Do-Jung;Hong, Ki-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.1-6
    • /
    • 2013
  • A 25ft class fishing leisure boat is developed, and the resistance performances are investigated by a model test in a high-speed circulating water channel. The design speed of the developed ship is 25 knots using a 150 ps outboard engine. A catamanan type hull form using a planing section is adopted considering the Froude number and large deck area. The effect of a center body attached on the bottom of the cross deck is studied under various conditions. Wave patterns are observed to make clear the relationship between the resistance performance and the wave characteristics. The results show that the shape of the center body and the position of the chine line can have a strong effect on the resistance performance in a certain velocity range.

Design and Construction of Long-Range High-Speed Foil Catamaran Passenger Ship (장거리 고속 수중익 쌍동 여객선의 설계와 건조)

  • Keh-Sik Min;Oi-Hyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.1-15
    • /
    • 1993
  • In response to the growing domestic request and the change of the overseas environment, Hyundai Maritime Research Institute has recently established a three-stage development plan for the high speed marine transportation system. As the first stage plan, the long-range high-speed foil catamaran passenger ship has been designed and constructed for the open-sea serivice of 800 nautical miles round trip with top speed above 40 knots. Extensive theoretical analyses and model tests were systematically carried omit along the course of design for the system optimization and the verification. In this paper, the brief summary of the design and the construction works shall be presented.

  • PDF

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

The Comparison on Resistance Performance and Running Attitude of Asymmetric Catamaran Changing Angle of Inclination of Tunnel Stern Exit Region (비대칭 고속 쌍동선의 선미터널 출구영역의 경사각 변화에 따른 저항성능 및 항주자세 분석)

  • Kim, Sang-Won;Seo, Kwang-Cheol;Cho, Dea-Hwan;Kim, Byung-Jae;Lee, Gyeong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.232-233
    • /
    • 2017
  • In this research, tunnel stern was applied on the asymmetric high-speed catamaran to evaluate vessel's hydrodynamic performance by numerical method, and the tunnel stern types are distinguished by angle of inclination of tunnel exit region into 3cases ($0^{\circ}$, $3^{\circ}$ and $6^{\circ}$). Consequently, it is confirmed that the total resistances of tunnel stern which have $0^{\circ}$ of inclination are lower about 4.8-17.9% than the bare hull in the wide speed range, but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are higher than bare hull about 5-14% and 5-29%, respectively. On the other hand, trim angles of $0^{\circ}$ of inclination tunnel stern show similar trend with those of bare hull in whole ranges of FnV but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are stabilized and declined respectively after FnV=1.54. These phenomena indicated that increasing angle of inclination of tunnel exit region had negative influence on resistance performance, however, it could make vessel's operation performance better than bare hull.

  • PDF