• Title/Summary/Keyword: Catalytic amination

Search Result 10, Processing Time 0.021 seconds

Selective Copper-Catalyzed Azidation and Amination of Aryl Halides with Sodium Azide (구리 촉매에 의한 할로젠화 아릴과 아지도 소듐의 선택적 아지드화 및 아민화 반응)

  • Paik, Seunguk
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.224-227
    • /
    • 2021
  • A rapid and selective copper-catalyzed amination of aryl halides with sodium azide was established by using 10 mol % of CuI, and 20 mol % of N,N'-dimethylethylenediamine in DMSO under microwave irradiation for 10 min. The catalytic system with 4-substituted aryl iodides was found to be the most effective leading to a nearly complete conversion.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Highly Selective Amination of o- and p-Alkyl Phenols over Pd/Al2O3-BaO

  • Ma, Jianchao;Wang, Huabang;Sun, Meng;Yang, Fan;Wu, Zhiwei;Wang, Donghua;Chen, Ligong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.387-392
    • /
    • 2012
  • A series of Pd-based catalysts were prepared and examined for the amination of 2,6-dimethylphenol in a fixedbed reactor. The best results were obtained for Pd/$Al_2O_3$-BaO with a conversion of 99.89% and a selectivity of 91.16%. These catalysts were characterized using BET, XRD, XPS, TEM and $NH_3$-TPD. Doped BaO not only improved the dispersion of the Pd particles but also decreased the acidity of the catalyst, which remarkably enhanced the selectivity and stability of the catalyst. The generality of Pd/$Al_2O_3$-BaO for this kind of reaction was demonstrated by catalytic aminations of o- and p-alkyl phenols.

Amination of Ethanol over Large Pore Zeolites (큰 기공 제올라이트에서 에탄올의 아민화반응)

  • Jeon, Hee-Young;Jeon, Seong-Hee;Lee, Cheon-Jae;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • The catalytic properties of large pore zeolite (mordenite, beta, and Y) with 12-membered rings were comparatively evaluated in the synthesis of diethylamines from ethanol amination. The number of strong acid sites, which obviously promoted the formation of mono- and diethylamines, was decreased with the increase of Si/Al ratio of the zeolites that were used. H-beta and H-Y zeolites with multidimensional pore channels favorably formed diethylether by the dimerization of ethanol, due to their large cage volumes and low acid strength. On the other hand, H-mordenite which has one dimensional straight channel was shown to be suitable for the formation of mono- and diethylamine which are well known as the useful intermediates of fine chemicals.

  • PDF

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

Preparation of Platinum Amine Complex Solution from Pt Scrap and its Catalytic Activity of Soot Oxidation (백금 스크랩으로부터 아민산백금용액 제조 및 Soot Oxidation 특성)

  • Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.93-99
    • /
    • 2018
  • Effective extraction of platinum group elements by dissolving waste platinum scrap from the display industry and solvent extraction, was studied. The extracted platinum solution was prepared as a precursor solution for diesel automotive exhaust gas purification catalyst and its catalytic activity was tested. The behavior of aqueous species of platinum was investigated through solution chemistry and based on the existence and behavior of these chemical species, the possibility of extraction and separation was established. By dissolving waste scrap by electrochemical method, the dissolution time of scrap was shortened and the extraction efficiency was increased. Through separation and removal of rhodium component, solvent extraction by TBP, and stripping by hydrochloric acid, Pt-Chloride-$H_2O$ solution was prepared. And then, an platinum amine complex solution through amination reaction with this solution as a raw material was prepared. The possibility of producing high-value platinum compounds from platinum group waste scrap was investigated by preparing platinum amine complex solution and then examining the catalytic activity with this amine precursor on the combustion reaction of carbon black.

Studies on the Synthesis of N-alkyl-N-acyl glucamines (N-alkyl-N-acyl glucamines의 합성에 관한 연구)

  • Ahn, Ho-Jeong;Cho, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.171-176
    • /
    • 1996
  • The easily biodegradable nonionic surfactant of glucamide(N-alkyl-N-acyl glucamine) was synthesized by the two-step reaction. The first step was the amination between alkylamine and glucose in methanol. Then, alkyl glucamines were obtained by reduction using Ni catalyst under the high pressure with 86~93% of reaction yield. The second step was the synthesis of glucamide from alkyl glucamine and fatty acid methyl ester in methanol under the alkali catalytic condition while refluxing the solvent. The reaction yield of this step was 84~95% except the benzyl glucamine, which the reaction yield was 50~70%. The molecular structure of four kinds of alkyl glucamine and 16 kinds of glucamide with different alkyl and acyl groups was studied by IR, MS and NMR.

  • PDF