DOI QR코드

DOI QR Code

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports

니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향

  • Jeong, Ye-Seul (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2019.05.03
  • Accepted : 2019.06.23
  • Published : 2019.10.01

Abstract

Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

산 염기성질이 다양하게 존재하는 담체($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) 상에 17 wt% Ni을 고정한 상태에서 함침법을 사용하여 촉매를 제조하여 수소 존재 하에 에탄올과 암모니아의 환원성 아민화 반응에 대한 촉매활성을 비교 평가하였다. 반응 전후에 있어 사용된 촉매는 X-선 회절, 질소 흡착, 에탄올-승온탈착(EtOH-TPD), 이소프로판올-승온탈착(IPA-TPD), 수소 화학흡착을 사용하여 특성분석을 수행하였다. pH 9.5 이상에서 침전법을 사용하여 $ZrO_2$$Y_2O_3$ 담체 제조 시 파이렉스 반응기에서 미량의 Si 용융으로 인해 $SiO_2-ZrO_2$$SiO_2-Y_2O_3$ 복합 산화물이 각각 생성되었다. 사용된 촉매 중에서 $Ni/SiO_2-Y_2O_3$ 촉매가 가장 좋은 활성을 보였으며 이는 높은 니켈 분산도와 EtOH-TPD와 IPA-TPD에서의 낮은 탈착온도 등과 밀접한 관련이 있었다. Ni/MgO 촉매상에서의 낮은 촉매 활성은 NiO-MgO 고형물 형성에 기인한 것으로 보이며, $Ni/TiO_2$ 경우에서는 담체-금속 간의 강한 상호 작용으로 인해 낮은 니켈 금속 상 존재로 인해 반응성이 낮게 나왔다. $TiO_2$와 MgO 이외의 담체를 사용한 경우에 있어서 유사한 에탄올 전환율에서의 에틸아민류와 아세토니트릴 선택도는 큰 차이를 보이지 않았다.

Keywords

References

  1. Bahn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H. and Beller, M., "The Catalytic Amination of Alcohols," ChemCatChem, 3, 1853-1864(2011). https://doi.org/10.1002/cctc.201100255
  2. Park, J.-H., Hong, E., An, S. H., Lim, D.-H. and Shin, C.-H., "Reductive Amination of Ethanol to Ethylamines over Ni/$Al_2O_3$ Catalysts," Korean J. Chem. Eng., 34, 2610-2618(2017). https://doi.org/10.1007/s11814-017-0164-4
  3. Sewell, G. S., O'Connor, C. T. and van Steen, E., "Effect of Activation Procedure and Support on the Reductive Amination of Ethanol Using Supported Cobalt Catalysts," J. Catal., 167, 513-521(1997). https://doi.org/10.1006/jcat.1997.1596
  4. Sewell, G., O'Connor, C. and Van Steen, E., "Reductive Amination of Ethanol with Silica-Supported Cobalt and Nickel Catalysts," Appl. Catal. A: Gen., 125, 99-112(1995). https://doi.org/10.1016/0926-860X(95)00010-0
  5. Hayes, K. S., "Industrial Processes for Manufacturing Amines," Appl. Catal. A: Gen., 221, 187-195(2001). https://doi.org/10.1016/S0926-860X(01)00813-4
  6. Sun, J., Qiu, X.-P., Wu, F. and Zhu, W.-T., "$H_2$ from Steam Reforming of Ethanol at Low Temperature over Ni/$Y_2O_3$, Ni/$La_2O_3$ and Ni/$Al_2O_3$ Catalysts for Fuel-Cell Application," Int. J. Hydrogen Energy, 30, 437-445(2005). https://doi.org/10.1016/j.ijhydene.2004.11.005
  7. Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W. and Hao, S., "Hydrogen from Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application," Int. J. Hydrogen Energy, 29, 1075-1081(2004). https://doi.org/10.1016/j.ijhydene.2003.11.004
  8. Pospisil, M. and Kanokova, P., "Effect of Different Treatments on the Reducibility of NiO-$Y_2O_3$ Mixed Oxides by Hydrogen," J. Therm. Anal. Calorim., 58, 77-88(1999). https://doi.org/10.1023/A:1010147704343
  9. Velu, S., Satoh, N., Gopinath, C. S. and Suzuki, K., "Oxidative Reforming of Bio-Ethanol over Cuniznal Mixed Oxide Catalysts for Hydrogen Production," Catal. Lett., 82, 145-152(2002). https://doi.org/10.1023/A:1020516830768
  10. Jeong, Y.-S. and Shin, C.-H., "Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH," Korean Chem. Eng. Res., 57, 133-141(2019).
  11. Bellido, J. D. and Assaf, E. M., "Effect of the $Y_2O_3-ZrO_2$ Support Composition on Nickel Catalyst Evaluated in Dry Reforming of Methane," Appl. Catal. A: Gen., 352, 179-187(2009). https://doi.org/10.1016/j.apcata.2008.10.002
  12. Liu, H. and He, D., "Properties of Ni/$Y_2O_3$ and Its Catalytic Performance in Methane Conversion to Syngas," Int. J. Hydrogen Energy, 36, 14447-14454(2011). https://doi.org/10.1016/j.ijhydene.2011.08.025
  13. Arena, F., Licciardello, A. and Parmaliana, A., "The Role of $Ni^{2+}$ Diffusion on the Reducibility of NiO/MgO System: A Combined TRP-XPS Study," Catal. Lett., 6, 139-149(1990). https://doi.org/10.1007/BF00764063
  14. Kumar, R., Kumar, K., Choudary, N. and Pant, K., "Effect of Support Materials on the Performance of Ni-Based Catalysts in Tri- Reforming of Methane," Fuel Process. Technol., 186, 40-52(2019). https://doi.org/10.1016/j.fuproc.2018.12.018
  15. Wang, Y., Yao, L., Wang, S., Mao, D. and Hu, C., "Low-Temperature Catalytic $CO_2$ Dry Reforming of Methane on Ni-Based Catalysts: A Review," Fuel Process. Technol., 169, 199-206(2018). https://doi.org/10.1016/j.fuproc.2017.10.007
  16. Pyen, S., Hong, E., Shin, M., Suh, Y.-W. and Shin, C.-H., "Acidity of Co-Precipitated $SiO_2-ZrO_2$ Mixed Oxides in the Acid-Catalyzed Dehydrations of Iso-Propanol and Formic Acid," Mol. Catal., 448, 71-77(2018). https://doi.org/10.1016/j.mcat.2018.01.031
  17. Noguchi, N., Morinaga, Y., Kajio, T., Yogarajah, E. and Nawa, T., "Influence of Portlandite on Pyrex Glass Dissolution and the Formation of Alkali?Silica Chemical Reaction Products," J. Am. Ceram. Soc., 101, 4549-4559(2018). https://doi.org/10.1111/jace.15719
  18. Del Monte, F., Larsen, W. and Mackenzie, J. D., "Chemical Interactions Promoting the $ZrO_2$ Tetragonal Stabilization in $ZrO_2-SiO_2$ Binary Oxides," J. Am. Ceram. Soc., 83, 1506-1512(2000). https://doi.org/10.1111/j.1151-2916.2000.tb01418.x
  19. Garvie, R., "Stabilization of the Tetragonal Structure in Zirconia Microcrystals," J. Phys. Chem., 82, 218-224(1978). https://doi.org/10.1021/j100491a016
  20. Garvie, R. and Goss, M., "Intrinsic Size Dependence of the Phase Transformation Temperature in Zirconia Microcrystals," J. Mater. Sci., 21, 1253-1257(1986). https://doi.org/10.1007/BF00553259
  21. Garvie, R. C., "The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect," J. Phys. Chem., 69, 1238-1243(1965). https://doi.org/10.1021/j100888a024
  22. Kim, S.-W., Kim, H.-K., Lee, S., Lee, K., Han, J. T., Kim, K.-B., Roh, K. C. and Jung, M.-H., "New Approach to Determine the Quality of Graphene," arXiv preprint arXiv:1709.09879(2017).
  23. Hu, Y., Cao, J., Deng, J., Cui, B., Tan, M., Li, J. and Zhang, H., "Synthesis of Acetonitrile from Ethanol Via Reductive Amination over Cu/${\gamma}-Al_2O_3$," React. Kinet. Mech. Cat., 106, 127-139(2012). https://doi.org/10.1007/s11144-011-0415-z
  24. Sewell, G. S., "The Reductive Animation of Ethanol Using Supported Metal Catalysts," University of Cape Town(1996).
  25. Folco, F., "Catalytic Processes for the Transformation of Ethanol into Acetonitrile," Bologna(2013).
  26. Rasko, J. and Kiss, J., "Adsorption and Surface Reactions of Acetaldehyde on $TiO_2$, $CeO_2$ and $Al_2O_3$," Appl. Catal. A: Gen., 287, 252-260(2005). https://doi.org/10.1016/j.apcata.2005.04.003
  27. Rasko, J. and Kiss, J., "Adsorption and Surface Reactions of Acetaldehyde on Alumina-Supported Noble Metal Catalysts," Catal. Lett., 101, 71-77(2005). https://doi.org/10.1007/s10562-004-3752-y
  28. Sinharoy, S. and Levenson, L., "The Formation and Decomposition of Nickel Carbide in Evaporated Nickel Films on Graphite," Thin Solid Films, 53, 31-36(1978). https://doi.org/10.1016/0040-6090(78)90367-X
  29. Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A. and Nordling, C., "Charge Transfer in Transition Metal Carbides and Related Compounds Studied by Esca," J. Phys. Chem. Solids, 30, 1835-1847(1969). https://doi.org/10.1016/0022-3697(69)90252-2
  30. Seo, G. and Kim, G. J., Catalyst-Basic Concept, Structure, and Function, Cheongmungak, Seoul, 2016.